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8 February 1960

Memo to: Individuals Holding Copies of 2591 -1 -H

From : J. W. Crispin, Jr.

Subject : Errata and Addenda for the Report 2581-1-H.

f Several items, which require comment, have been detected by, or brought
to the attention of, the authors regarding the report, "A Theoretical Method for the
Calculation of the Radar Cross Sections of Aircraft and Missiles", by J. W. Crispin, Jr.,
R. F. Goodrich and K. M. Siegel (The University of Michigan Radiation Laboratory
Report No. 2591-1-H, July 1959). For the most part these items fall into the category
of typographical errors (both of omission and commission) but there are other points on
which additional comments are required. This memorandum is thus being written to
bring these items to the attention of all of the individuals holding copies of the report.

It is not to be concluded that this list includes all of the errata of this report. In dealing
with a report of this size it would be presumptuous to assume that all errors had been
detected; it does include, however, all items detected as of 1 February 1960.

It is the belief of the authors that at least some of the questions which might
arise in connection with this report would be answered by the inclusion of a preface
which focuses atiention on the purpose, scope, and limitation: of the theoretical method

discussed. Such a preface Is appended to this memorandum,
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THE UNIVERSITY OF MICHIGAN

PREFACE FOR THE
REPORT NO. 2591-1-H

The radar cross section of an object is a measuxe of the extent to which that
object re-radiates electromagnetic energy. The value of the cross section, o,
depends upon the electromagnetic properties, the size, the shape, and the orien-
tation (with respect to the radar transmitter and receiver) of the object. The radar
cross section contains all the information obtainable about a distant target when using
electromagnetic energy as the probe of an experimental exploration, When the trans-
mitter and receiver are located at different places, the cross section is referred to
as being bistatic, while if they are located in the same place the cross section is
said to be monostatic.

Given the theoretically or experimentally determined value of the radar cross
section of a particular radar target and sufficient information about the radar sets
to be used, it is then possible to predict the maximum range-at which the target can
be observed. Also, cross section information provides a means of distinguishing
one target or class of targets from another.

The theoretical determination of the radar cross section of a body is a
relatively difficult problem. To date the ''exact' solution has been obtained only for
a very few bodies of simgple geometric shape; and in many of these cases numerical
results are available only for restricted ranges in aspect and body-to-wavelength
ratios. Approximate methods are available, however, for aimost all bodies of simple

shape and based on this information it has prcved possible to estimate the radar

ix
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cross sections of complicated shapes to 2 reasonable degree of accuracy and there
is a substantial body of satisfactory experimental verification of results, It is the
purpose of this report to consider this theoretical method for the estimation of the
radar cross sections of the class of complex shapes consisting of missiles and aircraft.

Radar cross sections of aircraft and missiles may, of course, be determined
by experimental means. Experimental measurements may be made¢ either on the
full -scale configuration or on a scaled model. These estimates of the cross sectiuon
may be obtained in a static experiment (one in which there is little or no relative
motion between the object and the transmitter and/or receiver - usually a lzhovatory
experiment) or in a dynamic experiment (one in which the measurements are made
during the flight of either the object itself or a scaled model). Many difficulties
plague each type of experiment and each bas its limitations. For example, correct
aspect data is very difficult to obtain in a dynamic test, and it is of course obvious
that many dynamic experiments would be extremely expensive, The advantages of
controlled laboratory experiments over dynamic tests cannot be overestimated due to
the great reduction in cost, the incrcased precision with which aspect angles can be
determined, and the greater control which can be placed on the other envircnmental
factors.

However, the static experiment is also beset with difficulties and limitations;
the two most irportant are those of size limitations and model construction problems.
As is well known, under certain restrictions which are not serious with regard to
most missile and aircraft problems, if we wish to know the cross section of a given

object at a given wavelength (say o, at %), we can obtain the desired information by

LS
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4 ; measuring the cross section of a 1/ N-scale model at the wavelength A; where

X = (1/N)Ay. The experiment will yleld model cross section values, say o (at Ag),
b which can be converted to "full-scale'' data at A; by multiplying o5 by N’2 Thus N

is determined by the values of A; (at which information is desired) and XA; (at which

the experiment can be conducted). It could (and often does) happen that the value of
N will be such that the model will be too large since many of the available facilities
are such that a model whose over-all dimer.sions are of the order of 3 or 4 feet

cannot be measured.

It is also very important when examining the results of a static experiment to

determine how the object was modeled, and in comparing experimental data obtained

at two different laboratories or in comparing experimental data with theoretical

estimates one should deterinine what differences existed in the models constructed.

(We shall find that the theoretical method involves what is in essence a model building
process.) Some differences in medel construction would not be expected to effect o
to any large extent; other such differences could lead to large differences in the cress
section estimates,

To obtain the radar cross section estimate by theoretical means it is expedient
to make use of techniques which are approximations based on electromagnetic theory.
One can obtain extreme precision in the results by resorting to the determination of
the exact solution to the corresponding electromagnetic theory boundary-value problem.
Unfortunately, the state of the art i8 such today that this can be done only on high-speed
electronic computors at great cost both in ime and money. (This is true for many

gimple geometrical shapes ard inus would be even more costly for a complex shape.)
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.

The radar cross section of a complex shape can, however, be approximated
theoretically using methods and techniques which are considerably less complicated
and expensive, and it is this approach which we shall discuss in this report. If one
is interested in determining the radar cross section of an ubject to within 2 to 10 db,
then this theoretical approxi mation method is quite useful. One should not count on
obtaining results which are better than 2 db by this method, and it is worth pointing
out that experimental data on complex shapes usually involves a possible error of
from 1 to 2 db or more depending on the magnitude of the cross section.

1t is also worth noting that it is questionable if we should even try to obiain
greater accuracies than to within 2 db (if the cost is externsive) since the variations
in two aircraft of the same model designation could easily result in changes in the
cross section (at least at some aspects) of 1 or 2 db or more.

This means, then, that we would concentrate on approximation methods yielding
results which can be expected to yield results of this order of accuracy. If, for ex-
ample, we are faced witk a choice between two methods of approach, the first known
to yield cross section values correct to within 2 to 4 db with very littie effort and the
second known to yield estimates correct to within 1 db but with considerably more
effort, we would ordinarily use the first method. The choice between the two methods
of approach depending oun the time available, and, in the estimation of the person per-
formirg the analysis, the relative importance of the role played by the cross section
coniribution being estimated.

Thus, in what follows we are thinking of the determination of radar cross
s2ction to within 2 to 10 db. Exmerience has jadicated thert for those cases for which

xit
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it is possible to compare theory with experiment a difference of less than 6 db
;' between theory and experiment is to be anticipated at most aspects.
gi
B The theoretical method for the calculation of the radar cross section of a
E

missile or an aircraft, which we shali discuss, consists essentially of three steps
(in what follows we assume that the over-all dimensions of the aircraft or missile
f are large with respect to the wavelength):
(1) The body is considered to be an ensemble of components each of
which can be geometrically approximated by a ''simple'* shape in
such a way that the radar cross section of the simple shape ap-

proximates the radar cross section of the component it models.

The first step, thus, in this theoretical method consists of a geo~
metrical breakdown (or model construction) of the configuration.

(2) The second step involves the calculation of the cross sections of
the simple shapes derived in step (1). This requires the applica-
tion of various approximation methods in most cases, since as
mentioned above, "'exact' solutions are available only for a very
few simple shapes.

(3) The third and final step in this process involves the proper com-

bination of the "'component cross sections’ to yield the estimate

of the cross section of the entire body.
In what follows we shall not devote much space to the first of these steps

except in Section 7 where we deal with illustrations, It should be pointed out,

xiit
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however, that this step is of prime impcrtance and great care should be taken to
make the ensemble of simple shapes a ''good'' representation of the aircraft or
missile under investigation.

The third step (the combination of the component cross sections) is discussed
- . in Section 6 while the rem ainder of the report is devoted to the methods and techniques
E f to be employed in carrying out the second step.
A considerable amount of information on this subject has been published in
‘*' previous University of Michigan reports in the Studies in Radar Cross Sections series.
‘ Unfortunately, some of this material h2s heretofore appeared only in classified ra-
,' ports even though the discussions on method are unclassified. Thus for completzness
we include in some of the Appendices some of this earlier work. For example,
Appendix A consists of material previously published in Studies in Radar Cross
Sections XVII, Appendix C is taken from Studies in Radar Cross Sections Vi, and
Appendix D is taken from Studies in Radar Cross Sections XVIII. Appencix H contains
a complete list of the Radiation Laboratory reports.

We have attempted in this report to present a detailed outline of the procedure

for calculating the radar cross sections of manned aircraft and missiles which has
evolved at the Radiation Laboratory of The University of Michigan during the past

several years. It is our intention that this report will serve as a handbhook for the

calculation of such radar cross sections.

IR

Examples of the application of this process to the determination of the radar

3 :' cross sections of various aircraft and missiles will be found in many of The Universily

o hgn
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of Michigan reports in the Studies in Radar Cross Sections series and in the reports
which supplement that series. Since many of these documents are at present
classified we have incladed an illustrative example in Section 7; of course it would

be of considerable value to examine the details of some of these earlier computations,
A partial list of documents which contain these examples are Studies in Radar Cross
Sections XII, X1V, XV, XVI, XVIII, XIX, XX, XXI and XXIV; the documents in the
supplementary series which would be of interest in this connection are the reports
2476-1-F, 2541-1-F, 2550-1-F, 2200(01)-1-T, 2500-1-T and 2660-1-F (see
Appendix H).

It is also worth pointing out that the field of diffraction and scattering is
presently getting considerable attention all over the world and that there is a continual
and heavy flow of new results. This happy state of affairs, of course, means that
the method described in this report will be subject to modification and improvement

with each applicable new result.

T T
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In what follows we shall comment on each item which has come to our attention:

Page 15: The figure 1s obviously in error; the two tangent lines should
touch the surface at the shadow boundary.

Page 16: The angle 5 not defined prior to this puint, and which appears in
Equation 3.8, is the angular separation hetween incident and emergent dirce-

tions (the angle § of Equation 3 3).

Page 25: The first line below Cquation 3 24 should read . ... equation (3.24)
into equation (3. 13) shows.. ..".
Page 37: Equation (4 3.7) should read, cos f' = ncos P

\fsinzﬁ + 1P cosZp

The expunential term in equation (4. 3. 8) should be

e-Zikz' ( -};)sine tan aLinzp+ r,zcoszp +cos ) - 141

On the line following equation (4. 3. 8), correct to read

s 2
1 sin 6 tane (sinzp +1 cos’P +cos 6.

n

Page 42: Equation (4. 4. 5) should be

2
(2] : ~
o :7al sin°0 (s_lrilda_cgw) (A° + B?) .

cos 6
Page 48: Inthe L/ A =1 25 graph of Figure 4.4-4 the vertical scale is
incorrect, being a factor of ten too large That is, the scale should run from
Nto 0.04. (This error also appears in the reference articlz from which the

graph was taken, }
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13,

THE UNIVERSITY OF MICIHIGAN

Page 49; In Figure 4, 4-5 the vertical scale pertains to ¢/A? rather than
for o/A2,
Page 63; In Figure 4.5-4 the vertical scale is incorrect being a factor
of ten too small, That i{s, the range should be 0,1 to 40 instead of from
0,01 to 4, [’I’hls can be noted by reference to Equation(4. 5. 16) and the curve
segment labeled (3" ).]
Page 65: Equation 4, 6, 3 contains a m!sprint; the factor cos49 in the
denominator should be cosGG.
Page 66: In the 2nd line from bottom: replace .....4.6-2, with .,...4.6-2."
and add the following footnote:

+This figure illustrates the nature of the function F, In

application one would restrict attention to values of kL

larger than those shown. (as an addenda we append Flgure

4.6-2a to this memo; In this figure ¥ is shown for kL in

the range from 5 to 30,)
Page 71; In the 2nd line from the bottom of the page, replace good by
good’ and append the following footnote:

+Recall that the term "good estimate" here refers to the ability
of obtaining agreement with experiment to within 2 to 6 db,

Page 74; In Figure 4.6-6 the vertical scale is for 0., ./ra’.
Page 76: In line 3 of Section 4.8: replace (see Section 6. 6) by (see

Section 5 of Appendix A),
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19,
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Page 82: In Equation (4,11, 2), (slne)N should be sanN.

In Equation (4, 11.5), the last factor in the numerator of the
left-hand member of this equation should be tan4a rather than tan41
Page 91: In the first line below Equation (5, 1.8): replace (page 14),

Ref. 15 by (page 14, Ref, 15),

Page 94: The text above the figure should be altered to read: ".....small
interval for small ), that is, for A small in comparison to the dimensions
of the scatterer, )"

Page 109; In the 3rd line below the figure delete the phrase "as poin::d
out in Section I",

Page 139: Below Equation (8.1), add...(Ref, 11, page 34).

Page 143;: In Equation (8, 2) the right-hand member should be changed to

read 2
-1

€vz | )

m

4
9

In the last line replace Figure 8-3 with Figure 8, 4.
After Equation (8, 2), add (see Reference 19, p. 452),
Page 144: The branch of the curve shown for V€ < 1 should be deleted; as
stated in Equation (8. 1) the expression is only applicable for € > 1.
Page 147: Add the following reference:

19. D, Z.Kerr, Propagation of Short Radlo Waves, McGraw-Hill

Book Company, Inc., New York, (1951),
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22. Page 158: The theorem stated at the bottom of the page requires additional
discussion; this addendum is enclosed.
23. Page 165: In Equation (3.5) parts of the absolute value symbols are missing

in the left-hand members,

24. Page 196: In line 5 of Section 7.1: replace .... (Ref. A-17). by

.e.. (Ref. A-17)*, and at the bottom of page add the following footnote:
* This material also appears as Appendix C of this report.

25, Page 197: In the 5th line from the bottom replace: ... Reference A-17
by ... Appendix C.

26. Page 213: In equation (8.24), the factors 2i should be replaced by -2.

217. Page 214-215: Tables A-1 and A-2 were obtained in 1955 and as can be seen,
the entries lack precision. We append newer, more accurate tables kindly
supplied to us by N.A. Logan of the Lockheed Aircraft Corporation.

28. Page 240: Equation (4.8) should be corrected to read

2i§
lim  F(%) =i

$-+;0 0

| 29. Page 328: In Fig. C-20, the pattern shown in the figure is for A = 1.25 cm

and represents the experimental pattern as given in Reference C-5.

i
4
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ADDENDUM FOR THE MATERIAL
ON PAGE 158 OF 2591-1-H

The theorem stated at the bottom of page 158 is not correct. To bring this
point more clearly into focus let us concentrate on the S(HV;HV) matrix. Using
the notation employed by H. Brysk ('"Measurement of the Scattering Matrix with an

Intervening lonosphere'', Communication and Electronics, Nov. 1958) we note that

EP‘/ £ = Sy; cos@ cosa + Sy sind sinax + S, sin(f + a)

s,

. i
with ER the field measured at the receiver, E' the incident field, Sﬂﬁ = lsaB
the subscript '1'"" denoting the horizontal (H) direction, and the subscript '2' denoting

the vertical (V) direction, Lettingl SQB

= aaB we then can write

i ifa i(Py;-10) (Pn-0y2)

ER/ E = e a e cosf cosa +ane sind sina + a,; sin(6+a)| .

With no intervening magneto-ionic medium 6 and @ represent the polarization angles
of the transmitter and receiver respectively with H corresponding to 6 or a being

zero and V corxesponding to 6 or a being t/ 2. ¢(6,a) is given by

2
¢(6,0) = lim 4R |R/E' |
R—

and thus it would be possible to write

Py -P10) Ufn-pra)

a; e €089 cosa + agp e sinf sina + 2., sin(f+a)

2
s(,a) = K

= K [“:1 cos?8 cos’a + a§, 8in?0 siny + a:, sin’(6+c)

+ 2 a;; ag cus cosa 8ind sina cos(fy; -Pgy)

Note: Equation is
continved on next page.
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e et

= + 2 ayy 243 cos6 cosa sin(6+a) cos(fy; -P12)
+ 2 ag 8,3 Sinf sina sin(G+o) cos(¢u~¢u)]

with K a determinable constant,

Thus we see that the five cross sections listed on page 158 would give us

o(HH) = Ka}

e(HV) = Kad;

o(VV) = Ka}

o(AH) = K[afjcos?A + a}; sin’A +ay; a;, sin2A cos(fy-f,5) ]

o(aV) = K[a}; sin®A + a3y Cos’A + ag a5 8in2A cos(fn-fid)] .

It is obvious that these cross sections will determine a,;;, a3, ag,
cos(fyy -By2) and cos(fn-P13), but cos(fy;-Ps) is not obtained. Thus, these cross
sections only determine the matrix up to an ambiguity in the phase factors. A suf-
ficient set of measurements would be o{HH), o (HV), ¢(VV) and any twe of the three
phases associated with these amplitudes.

It might be noted, however, that if in addition to the five cruss section values
listed sbove we obtain o(A,-A) (A ¥ 0 and A ¥ x/2) we would have
o(A,-A) = K [3,21 cosia + gy sin?a - 23y ay cos?A sinA cus ({29 'ﬁzﬂ from

which cos(fy; - §x) can be calculated. Since only relative phases are of interest,

T

we can set fiy = 0 and we would thus have from the above, cosfy; = N;, cosfn = N3,
(thus sinfy; = t\ﬁ ~-N} and sinfg = tJl -N; ), and cos(py; - ) = N3. This means 5

that we would have sinfl, sinfy; = N3 - NjN;; we'd be able to determine if sinf,, and 1

M ek BB

sinfy had like or unlike agns. This would remove some of the ambiguity, but not all, |

P R K e
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ADDENDUM FOR PAGES 214-215 OF 2591-1-H
V A 2 eigt dat
; TABLE OF f£(§) & f X 0)
-0
4 £ REAL f MAG f £ ARG f
3 -1.0 . 9429 ~1.9439 2.1605 295. 88
| -.9 . 7402 -1. 8491 1.9918 291. 82
. - .8 . 5944 -1.7297 1.8290 288. 97
-1 . 4959 -1.5967 1.6719 287.25
- .6 . 4338 -1.4578 1.5210 286. 57
f -.5 . 3992 -1.3180 1.3771 286. 85
- 4 . 3836 -1.1800 1.2408 288. 01
-.3 . 3800 -1. 0451 1.1120 289,98
-.2 . 3823 - .9148 .9915 202. 68
- .1 . 3860 - .7901 .8793 296. 04
0 . 3879 - .6719 .7758 300. 00
.1 . 3855 - .5611 .6808 304. 99
.2 . 3776 - .4588 .5942 309. 46
.3 . 3637 - . 3659 .5159 314.83
4 . 3445 - .2829 . 4455 320.58
.5 .3198 - .2106 . 3829 326.63
.6 . 2916 - .1489 . 3274 332.95
7 .2610 - .0876 .21786 339.49
.8 . 2282 - . 0562 .2360 346.22
.9 L1977 ~ . 0239 .1901 353. 09
1.0 .1673 .0002 .1673 .08
1.1 .1389 .0175 .1400 7.16
1.2 1132 . 0288 .1168 14, 30
1.3 . 0903 . 0355 . 0971 21.48
1.4 . 0706 .0386 . 0805 28.67
1.5 . 0539 .0390 . 0665 35. 88
1.6 . 0401 .0375 . 0549 43. 07
1.7 . 0289 . 0347 . 0452 50. 25
1.8 . 0200 .0313 . 0371 57.40
1.9 .0131 .0275 . 0305 64.52
2.0 . 0079 . 0237 . 0250 71.61
2,1 . 0040 . 0201 . 0204 78.66
2.2 . 0013 .0170 . 0167 85.67
2.3 . 0006 .0137 . 0137 92.65
2.4 . 0019 .0110 .0112 99. 60
2.5 . 0626 . 0087 . 0091 106. 51
2.6 . 0030 . 0068 . 0075 113.39
2,7 . 0031 . 0053 . 0061 120,24
2.8 . 0030 . 0040 . 0030 127.08
- 2.9 . 0028 . 0029 . 0040 133.88
g ) 3.0 . 0026 . 0021 . 0033 140. 67
Y
B-1
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(#4)
3 FE), 1 8153/3 / e1§t dt
] TABLE OF K§) T -,r;:" )
Y -
i 3 REAL 1 IMAG 1 1 ARG 1
; 0 o0 ®© © 30. 00
3 -1 3. 9517 1.917 4.397 25.85
b 1 -2 2.289 . 950 2. 479 22.53
¥ 1 -.3 1.7417 .618 1.853 19. 46
-4 1.485 . 448 1.551 16.78
K ¢ L -.5 1.334 . 344 1.377 14.46
P & -.6 1.238 .283 1.270 12.89
| -7 1.174 .222 1.194 10.70
g, ! -.8 1.128 .182 1.143 9.19
f -.9 1. 096 .152 1.106 7.49
-1.0 1.073 .127 1. 080 6.78
-1.1 1.055 .108 1.060 5.82
-1.2 1.042 . 091 1.046 5. 01
' -1.3 1.033 .078 1.035 4.30
-1.4 1. 025 . 067 1.027 3.74
-1.5 1.018 . 057 1.021 3.22
J -1.6 1.015 . 049 1.016 2.75
| -1.17 1.011 . 040 1.012 2.26
. | -1.8 1. 008 . 039 1.009 2.13
-1.9 1. 007 . 033 1. 007 1.90
-2.0 1. 005 . 029 1. 006 1.63
-2.1 1. 004 . 025 1. 005 1.42
-2.2 1.004 . 022 1.004 1.15
-2.3 1. 003 .019 1. 003 1,11
2.4 1. 002 017 1.002 0.98
- -2.5 1.0018 . 0154 1. 0020 0.88
o -2.6 1. 0015 .0138 1.0016 0.79
| 2.7 1.0012 0124 1.0013 0.1
: ! -2.8 1. 0010 ,0111 1.0010 0.64
E -2.9 1. 0008 .0101 1. 0008 0.58
-3.0 1. 0007 . 0081 1. 0007 0.52
i -3.1 1. 0006 . 0083 1. 0006 0. 47
; -3.2 1. 0004 . 0076 1. 0005 0.43
! -3.3 1. 0004 . 0069 1. 0004 0.40
- -3.4 1. 0003 . 0063 1. 0003 0.36
. -3.5 1. 0003 . 0058 1. 0003 0.33
i -3.8 1. 0002 . 00523 1. 0002 0.31
' -3.17 1. 0002 . 0049 1. 0002 0.28
. -3.8 1. 0002 . 0045 i.0002 0.26
: -3.9 1. 0901 . 0042 1. 0002 0.24
-4.0 1. 0001 . 0039 1. 0001 0.22
'K
B-2
i
k- | o
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ADDENDUM FOR 2591-1-H
(page 67)

Fig. 4.6-2a: The Function F for ~5 <kL < 35
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INTRODUCTION

The problem of characierizing the radar properties of complex targets
is such as to forbid a precise delineation of the methods. That this obtains
will be made clear below 2s we point out the methods by means of examples,

We will {find that, although the formal solutions are known, the application of
them to a given radar target usually leads to such complicated and involved
treatments as to render these formal solutions practically useless, What is
necessary is to first approximate the complex target by a collection of simple
shapes, to next find appropriate methods of characterizing the radar proper-
ties of the simple shapes, and finally to recombine the simple shapes along

with their radar characteristics to give a useful radar description of the original
complex target.

We start with an outline and review of the pertinent electromagnetic
formalism. This is a necessary starting point in defining the quantities which
are used to characterize radar targets and in developing the approximate methods
used in finding these quantities. The basis of the development is Maxwell's equations
which can be found in any standard text in electromagnetic theory (Ref. 1).

In rationalized MKS units Maxwell's equations are

PxE = - 2B | 7.0 =p
at
-
Fx H = 8D +%, VB =0
at
1
e e NS Sensciniited

%
%
:
T
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where E = eciectrie field intensity, H = magnetic field intensity, D = electric
- - K] ‘; 3 s
displacement, B = magnetic induction, J = ‘urrent Jensity, and p = charge

T density,

If now we assume an harmonic time dependence of the ¢lectromagnetic |

5 guantities of the form e “! these become
7xE =iuvB , 7-D = ¢ |
VxH = -iwD+J, V.-B =0. J
E ' New in an homogeneous, isvtropic, and source-free 1egion we have ;
L ;;,! ) {
5 B = |

D=¢® (1.3)
T =0

where u and € are the magnetic permeability and the dielectric constant of the x

medium respactively.

Substituting in equation (1.2) and separately eliminating £ and H we have §

that both ¥ and H satisfy
vx(vxz];)ak’xf (1.9

where k® = ?pn €. Since both field quantities £ and ® are solenoidal in a scurce-

free region equation (1.4) becomes

2 —-i
(v +d Yy =0 . (1.5)
The conditions imposed on the electromagnetic fields at the interface of two perfect

dielectrics with unit normal f are

R e e s el e W
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Bx(Ey-Ep) =0, f.(0-Dp =0
(1.6)
A — — A —— o
nX(Hl"Hz) = ( » n'(Bl'Bz) = 0

where the subscripts 1 and 2 refer to the two sides of the interface, In the case

of a perfectly conducting surface the conditions are

A
nxkE =0

. (1.7
A.B =0

In our determination of the radar characteristics of the various targets we take
them to be illuminated by a plane wave, This is no essential restriction on the
sorrce of illumination since an arbitrary source can be expressed in every case

as some combination of plane waves, Assuming an incident plane wave we have

that the field quantities are of the form
T=7,+ 3, .9

where { is one of the vector fields satisfying Maxwell's equations and the

e -

boundary conditions, y’l 0 is the incident plane wave, and ¥ s is the scattered
field.

The probler is now specified except for tt- ~ havior of the fields at
infinity, the radiation condition. This condition is equivalent to the physical
requirement that the scattered field behave as outgoing or diverging waves at
large distances from the scattering surface. Moreover, it is a mathematical
requirement that the solution be specified uniquely., We state it in the form

lim

(Ref. 2) s
r—-»m “§

- dh. 2
Tx(Px @) -ikp,| d8 =0 (1.9)

r
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where r is the distince from the origin of the fixed reference frame to an
e¢nveloping sphere Sr of radius r.

The above formulation of the . :lem, in terms of a differential equation
and boundary condition, leads to an in’2gral equation formulation making use of
a Green's function, To show this we consider first a scalar problem. Let ¥

satisfy 2 3
(P +x)Y =0 (1.10)

and the boundary conditions
(o =1
(1.11)
W = g
an
on a finite closed surface S. Let the source of radiation be surrounded by a

small sphere So and let the entire region be bounded by a large sphere Sm .

Then, in general

6] =-f(¢(r")§§§a§'l_-e(?,?)iufl) s , (1.12)
an an

where G is the free space Green's function

.. ik|F - 7
G(r,r) = 1L e

1,13
w FoE 1.3

fn_. is the outward normal derivative and the integration is over the bounding
surfaces, 8, S, »nd S,,. The integration over S, vanishes by virtue of the

requirement that ) satisfy the radiation condition and the integration over S,

gives the incident wave. Therefore

g = ¥ 0+ J‘s(f%—"_ - gG) ds . (1.14)




:
e |
|

In the case of the vector electromagnetic fields we get “he similar

expressions

E =j[ VGx(fxﬁ)]dS—;;*‘_ vxf[vcx(ﬁ‘xe)]ds
s (1.15)

"= Axf)]as+ L Exf)]ds .
H Sf [vc;x(ﬂxn)]ds+ik VxJ[VGx(Ex )] s

! If the scattering surface is perfectly conducting the boundary conditions require
AXE=0 on$S . (1.16)
In addition we can recognize the surface current density as
K =H8xH onS . (1.17)

These reduce the equations (1.15)

E=E°+Tll? foVle?dS
L 8 (1.18)
H = Ho-fVGxK ds

S

To put the second of equations (1,18) in the form usually considered we

note that for r very large,

ke kT
vG = iﬂ kTe . (1.19)
where -k} = kT ; hence, - a
- — ikr ! f. r! -
H= Ho-%;r_uc?x e (¢ x) ds, (1.20)
8
The scattered field is N
- ikr ~tke-r'
Hy = -~—-—§' e (R xH 8. (1.21)
r
8
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The electromagnetic fields are not physically measurable quantities
as such. A physical measurement can be made of such things as distances,
times, and energies. Hence, we are led to characterize the properties of
a radar target in terms of the radar cross section which is a measure of the

energy scattered from the target. Precisely, the radar cross section is

defined as
H (6, 2
0(6,p) = lim 4z r? ——5~( p)
r»o® HO
or
E,( :
5(6,p) = lim 4n 2 | Es(6.0) (1.22)
T~ E,

where Hs or Es are the scattered fields propagating in the direction given by
the angles (6, f) and E, or H_ are the strengths of the incident fields.

There is a class of problems which are soiuble by means of separation
of variable. These are those for which the operator in equation (1.5), 72 + K .
is separable in some coordinate system such that the scattering surface is a
coordinate surface. We refer to these as separable problems. The solutions
then appear as a series of the special functions of mathematical physics. The
usefuiness of this approach is restricted by two considerations: First the
special functions are not sufficiently tabulated in all cases and second the

series solution may be too slowly convergent. In fact, only in the case of the

sphere has this approach received much attention.

j‘ ;
o e i bl b ol Gk iw




TP " "

(o 3

Although we will make little use of these separable solutions in
characterizing the radar properties of complex targets we will briefly
consider one such solution, the sphere. We will use this solution as a
starting point for considering the various approximation methods which will
be used for more general shapes.

To motivate this consideration of the sphere solution we repeat the
point made above: After the resolution of a complex radar target into a
number of simple shapes we need a way of deciding what approximate methods
are appropriate to finding the radar properties of the simple shapes. For a
given orientation of the simple target and polarization of the radiation this
decision, in most cases, is made after comparing certain "characteristic
dimensions' of the target with the wavelength of the radiation. Since the
behavior of the sphere as a radar target is invariant under rotations and
since it has a single dimension, the radius, we first consider this simplest

case.




2

THE SPHERE

We take the harmonic series solution for the scattering of a plane

electromagnetic wave by a perfectly conducting sphere. This solution, first |

given by Mie {Ref. 3), is expressed in spherical coordinates. We take the

incident plane wave directed along the axis 6 =0, the z-axis, and polarized

with the electric vector along § =0, the x-axis. With a perfectly conducting

sphere of radius a at the origin the scattered field at any point (r, 6, ) in

space is given by

®
Eg = - EO cosf 2 (i)n 2n+1 (jn(ka)
1 n{n+i) hnl) (ka)

(¢1
hgik!‘) P *cose)
sind

[ kajp(ka;)' [krhg)(kr)]‘ K] P(l)(cose)
[xa b) (ka))' ke @ n
(2.1)
0]
8 _ N onst _}_g(ka) h(:)( d P(l) 56
E E, sinp (i) e (kr) (cos@)
p° 1 n(n+1) hs)(ka) B g P
_ ki Ga)])’ [krbg) kn)] PW(coss)
sind

[ka hg) (ka)] ' kr




where E is the amplitude of the incident field, jp and h;l) are the spherical
1

Bessel and Hankel functions respectively, and Pfl) is an associated Legendre

function. The primes denote differentiation with respect to the argument of

the functions, The far field form of this solution is found by using the

asymptotic form

i (1) n#l  ikr
e (kr) = (<) £
1 hn T kr

in equations {2.1), retaining terms of order % ’

o . (1)
E: = 1E_ cos g .S- ' 2n+1 Jg)(ka) P, (cosb)
1 nn#l) h, " (ka) siné

- [ka In (ka)] d Pm (cos6)

[ka 1 () a °®

2.2)

@
kr . | 3n(ka) 1
Es = -E0 ein;5 e nti - 4 Pi)(coae)

kr T n(nH) hs ) (ka)

' (1
[ka ) ()] P, (cos6)

The limitation on this representation of the sphere solution is the rate

of convergence of the series as a function of the parameter ka. This parameter,

AN b o1 b BN

in the case of the sphere, gives the comparison of the characteristic dimension

of the sphere, the radius a, with the wavelength A = -i!- . Rence, a study of
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various approximations to the solution and the validity of these approximations
as a function of ka will serve as an introduction to the consideration of more
complicated shapes and the approximation of their behavior as radar targets.
First we make the restriction kad<1; i.e., we consider spheres which
are very small compared with the wavelength. On examining the terms in the

series of equation (2.2) we see that since

.
lka) = 28 B () + 0[(ka)n+2]
(2n+1)!
‘ 2.3
W ) = o @ gyl o[(ka)'“‘3]
" 2 n!

only the first order terms need be considered for ka sufficiently small. In

this approximation the fields (2.2) become

8 ~ € 2.3 21
E, — E, cosP k" a” (cotl 2-)
(2.4)
ik
ES = - E_sinp k2ad(1 -cos0)
¢ r 0 2

and the radar cross section is

2 2
c = 4r (kz a3) [ (cos@ - %) cos®p + (1 - -; c0s6) sin’f } . (2.9

Cn examining the way the parameters enter the expression for the

cross section we see that we can rewrite equation (2.5) as

224 2
=3 VE | (1-cose) cos® + (1 - 1 cos6) sin’p } (2.6)
4r 2 2

10




Sl Rt A AL

——— s -

b

where V 18 the volume of the scatterer. This is characteristic of the large

wavelength or Rayleigh approximation: The cross section is proportional to
the volume squared and inversely proportional to the fourth power of the
wavelength.

The physical content of this result is essentially that our probe, the
electromagnetic radiation of large wavelength, is not {ine enough to sense more
than the over-all size of the target, the volume. This result also obtains for
other shaped targets so long as they are sufficiently small (Ref. 4). Quite
generally we have in the Rayleigh region for backscattering

e =4 v? fa,n,...) @.7

T
where f is a correction factor taking into account a more detailed description
of the target, a,b,..., being the parameters describing the shape of the target.
We can continue this process, computing the higher magnetic and
electric multipole mon..nts. The resulting series of multipcle moments would
be precisely the series of equation (2.1). This important observation leads us
to point out that generally the rediation from the excitation of any target can be
considered as arising from a collection of electric and magetic multipoles.
As in the case of the sphere, as the wavelength of the radiation becomes smaller
with respect to certain characteristic dimensiong of the target, the more
muitipoles .tre necessary to characterize the target.

In the high frequency region for the sphere, ka >> 1, the rate of

convesgence of the series (2.1) is so slow as to make this representation of

11




the solution inappropriate, There is an alternative formulation making use
of the Watson transform (Ref. 5), however, we will approach the problem in
. a more generally applicable, although approximate, way,
£
1.
1. -
Ey ?
7
b % ‘
b
!
i
2N
.
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3

PHYSICAL OPTICS APPROXIMATION

Substituting (1.13) and (1.17) into (1.18) the following expression for

the scattered field is obtained

. ikR
: G (ﬁxH)xv—elI—{—ds. (2.1)

If the field induced on the directly illuminated portion of the surface by the incident
radiation is taken to be approximately the geometrical optics field the scattered
field can be approximated. By this we mean that, at a given point on the
geometrically illuminated part of the sphere, the field is approximately

that which would be induced in the limit ka » . This is also the field

which would be induced on an infinite plane tangent to the sphere at the

point in question which,after an elementary consideration,is found to be

twice the tangential component of the incident magnetic field on the geometri-
cally illuminated side of the sphere and zero in the shadow.

Equation (3.1) is then rewritten

T
iR

L RxH )x p&— ds, (3.:
8 4 GO R
iliuminated

side

where ﬁGO =2 H i with ﬁi the tangential component of the incident field.

The croes section in this approximation is

13




r/2
o (6) . (21;3)2 5 sin 3 cos BB Jo(ka sin@ sin3)
0

2
xra

(3.3)

2

ika(l1+cos 6) cos .3

e d3 »
where 6 is the angular separation of the incident and emergent airection. For
backscattering this reduces to the simpler expression

a(0) .y . Sin 2ka . l-cos2ka (3. 4)

78’ ka (ka)?

where we note that the leading term is just the geometrical optics result.

In the above we have made no special use of the fact that the physical
optics metnod was applied to a sphere. The only requirement was that the
surface be able to be locally approximated by a plane for the purpose of
finding the field on the surface. Hence, we suggest that the method of phys-
ical optics is more generally applicable. The important reservation in its
application can be seen from a comparison of the results of summing the
series (2.1) computing the cross section for backscattering and comparing it
with the result (3.4). As ka increases both the exact solution and the physical
optics solution oscillate about the geometrical optics value but the oscilla-
tions are not the same. From this we conclude that physical optics can be
used to approximate the magnitude, although no better than genmetrical
optics, but can give no information about the oscillations about the geometrical

optics value.

14




We start with equation (3.2) and consider the physical optics approxima-
tion to the field scattered by a perfectly conducting surface S. Let the incident
field be given by

B =H fe . (3.5)

We now divide the surface S into the geometrically illuminated side S;, and
the shadowed side, S, (Figure 3-1) by meanz of the shadow curve % a0
where k is the unit vector in the direction of propagation of the incident wave

and N is the normal to S.

\ shadow curve

incident wavefront
FIG. 3-1
The geometric optics current is given by
R 2A xR, ons§
K = ! . (3.6)
GO 0 , ons§
If ¢ is the position vector of the field point and ¥ ’the position vector of a

surface element of §,the gradient of the Green's function in the far field

15




approximation can be written as

ikR kr ~ifcf 3
p -£ ~ £ e fﬁf R (3.7)
47 R 47 r
where R = ‘ r - f'l and T(f = kT. Substiiuting in (3.5)
. ik ikr . A -&f-;’ ikr R
i -= £ hxH )xTe ds- £ F(3 , (3.8
5 2n r 1 r
81
where
Fi8) = —2 l.(?\'a)f-(?of)a] . (3.9
2%
and A A
. ikr' - (k-T)
f = j ne ds. (3.10)
SQ
Hence, the radar cross section is given by
2
o(B)“hi?“ . (3.11)

If we take into account the polarization of the receiver, we can define an

effective cross section,

o (B -a|2.3] (3.12)
e i

A
where d is a unit vector in the direction of the receiver polarization.

N
where 8' refers to the illuminated portion of the surface.
16
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In the simpler case of hackscattering we have ? =X and

4x 2
o = — H : (3.13)
Az ?
where
A A ZiR'I"
g =k-\ne ds. (3.14)

A
To simplify the discussion we orient the coordinate system such that k =72,

then

3 1]
g = S n e2kZ 4o (3.15)

But we note that n, dS is just the projection of the elementary area dS on a

plane perpendicular to the direction of incidence and we write

a8

n_ds = — dz!
) 32/
Finally
'4
g _Sem 38 4z (3.16)
oz’
or more generally
2ikp
g - ( e 24 , (3.17)

” ap

where p is the distance measured in the direction of incidence and A is the
area of the projection of the part of the scatterer to one side of a plane of

constant p (the side indicated by arrows in Figure 3-2), the projection being

17
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«———— Plane of Constant p

Shadow Region

Nirection of
Incidence

Iluminated |
Region

\ Shadow Curve

FIG. 3-2: THE SHADOW CURVE (GENERAL)
made onto the plane of constant p. From equation (3.17) we see that physical optics
predicts no dependence of monostatic cross section on polarization (at least the form
of physical optics which we are using here). Equation (3.17) may be interpreted aa

saying that each element of area makes a contribution to g, but with 2 phase factor

eZIkp 80 that two contributions may either add or cancel depending on their relative
phases.

As an example of physical optics we will again consider the cross secticn

of a sphere. For the sphere in Figure 3-3 the area function is

0 (p g -2)
A= r(ta2 -pz) (-a\< p< 0) (3.18)
xa’ (0K p)
———————a
L
7
a
/
st arrrreem el

Direction of Incidence

FIG. 3-3: SHADOW CURVE (SPHERE)

18
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From equation (3.18) we find:

0 (p g -a)

dA

-—CTE = { -2'9 (-ag D\< 0) (3.19)
0 (0 p)

The variation of A and dA/dp with p is shown in Figure 3-4. For short
9
wavelengths, k is large and e ke oscillates very rapidly (that is its real

and imaginary parts oscillate very rapidly). As a result, whenever dA/dp

A
} d

o 278

- p

FIG. 3-4: A AND dA/dp - I

varies slowly the contributions for values of g differing by A /4 will nearly
cancel. Omly the regions where dA/dp changes rapidly will contribute
appreciably to the integral. From Fig. 3-4 it is clear that the main
contribution comes from p = -a, For this particular problem the integral
can be evaluated exactly; 80, let us see whether the above ideas agree with

the exact solution. We have

. .
8- S 2% (L2gp) gp - ML 2N, ¥ kA (3.20)
k 2k3
-8

19
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The terms having an e factor can be interpreted as the contribu-

tion from p = o, With this interpretation we see that the contributions from

the intermediate region have cancelled each other. For large k the term,

wia _-2ika . . . .
— e dominates the others. This term is due to the jump in dA/dp
2
at p = -~a. The other two terms are due to the discontinuity in 11_;4 at p=-a
dp

and at p = 0, According to the interpretation used here we should find that
another area function for which dA/dp has a jump of 27a at p=-a but is
otherwise continuous (varying but little in a distance of a wavelength) should

give the same result (for large k). For example, suppose that as in (Fig. 3-5)

0 0 (p <-3)
dA
. and 2= - , (3.21)
As do
27a [1 _e-B(p+a)] ZWae-B(p+a) {p > -2)
B
dA
A
27a y @
B T 27xa
- p | \‘ >

FIG. 3-5: A AND dA/dp -

then we can again evaluate g exactly with the result

™
g = S ezu‘p 2rae.8(p+‘) do = ta_ -2ka (3.22)
i
o k+ _‘Z_

20
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For large k, equations (3.20) and (3.22) are in agreement so that the inter-
pretation which we have been using seems to be accurate.

There is another way of looking at the physical optics integral which
can be very illuminating. If, for the sphere problem, we let

p
f(p) = S e2ikz (-272) dz, then g = £(0).

-a

Now f(p) is a complex number and as p varies from -a, to 0, f(p) traces out
a curve in the complex plane. This curve is called a vibration curve. The
vibration curve is the limiting form of a vibration polygon obtained by

replacing the integral in equation (3.17) by an approximating sum

Z eZikzn < dAN Az
n dz /p n

The individual terms in this series can be looked on as little vectors in the
complex plane which add up as shown in Figure 3-6. The magnitude of each
vector is (-—:—‘3) Azn, and the vector points in a direction making an
angle 2kz_ with th[; real axis. If we take a constant value of Azn then the
angle which the resultant vectors make with the real axis will increase
steadily, If A is constant then the vectors will go around a circle of

dz

radius L IM‘ . i { 4a varies slowly then the vibration curve will
2k |az dz
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spiral about a relatively fixed point with a slowly changing radius. However

each time 44, has a discontinuity the point about which the vibration curve

dz

is spiraling will jump proportionately. For the sphere, the vibration curve

will appear roughly as in Figure 3-7. It can be seen that the spiral ends
: -2ika

at approximately the original center of curvature which is T e .
k

As a second example of a vibration curve, let us take an area function for

dA
which —— has two jump discontinuities as shown in Figure 3-8. In this case

the vibration curve will take the form shown in Figure 3-9.

FIG. 3-6: VIBRATION CURVE - I

This can be analyzed as follows: at p = 0 the center of the vibration spiral

is shifted to the point A (Fig. 3-10) and the spiral follows the large circle.
The radius of the circle slowly decreases until the spiral is following the small
circle. At the second discontinuity the center is again shifted, this time, to

the point B. The center of the spiral ends at the same place as the spiral
itself. Thus by trscing the motion of the center of the spiral we can find the

value of the integral. In more complicated cases this can be quite a useful

o e e e

[TV o ST

aid to our thinking.
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FIG. 3-9: VIBRATION CURVE -II FIG. 3-10:
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i 94 yehaves in the same manner for two bodies then the physical

optics cross section for the two bodies will be nearly equal. We have seen that

bodies like the sphere which have finite radii of curvature will have a —gg-

which has a jump where the incident field first hits the body and then goes

smoothly to zero. At the point at which the incident wave first hits such a

smocth body we can approximate the body by a paraboloid having the same

principle radii of curvature. Once we hLave found the cross section for such a
paraboloid we will have an approximate cross section for all such smooth

bodies. We take the equation of the paraboloid (Fig. 3-11) to be

2
p=-X_ 4+ I (3.23)

2R, 2R,

<

FIG. 3-11: THE PARABOLOID

where R, and R, are principle radii of curvature at the poin: {0, J, 0) where

the incident wave first hits the paraboloid. The area function is

Ay it

A=2p VR R, (p 3 0).

Thus

24
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—%‘- -2 VR R, (p > 0.

This does not go to zero for large p but we can modify the body very slightly

80 that
A L0 YRR P (020
dp
where 8 is very small, We then have
¢ 2 -Bp riVR R,
g = j e 2tV R R, e'P dp 3—;)0 ——-—-—l-;-——-—— (3.24)

0

Substitution of equation (3.24) into equation {3.17) shows that the approximate
cross section of a smooth body is

¢ =T R Ry (3.25)

where R, and R, are the principle radii of curvature at the specular reflection
point. This formula was obtained by assuming k large so that the return was
essentially from the specular reflection point. Hence the same result could be
obtained alternatively by using geometric optics. As a result this formula for
o is often called the geometric optics formula for o.

Equation (3.25) is one of the most useful cross section formulas due
to its extreme simplicity. It is couvenient for applications to have a few
formulas giving R, and R,.

If the equation of the surface is given in the form z = f %, y) then

(1+£* + 2y
x y

R R = - (3.26)
fextyy -y
25
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i the equaiion of the surface is given in the form F(x, y, z} = 0, then

2
(F* + F° + F?)
X y A

(3.27)

R R, ’

Fux ny Fez Fy

Xz “yz "2z "2

If the equation of the surface is given
y =y (s, v), z=z(u, v) then

(EG-F* )

I
LN-M?

2 2 2
E=x +y +z
u’ Yy T R

X X X X
*wu *u v Xav *u *v Xw Xu Xy
L= Yy Yu Yy M= |V Yu Yy N = | Yo Vg Yy
z z z 2 z z z z 2z
w u v w u v VWwoou v

26
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parametrically as x =x(u, v),

(3.28)

(3.29)




where a is the angle hetween the direction of incidence and the axis of the

body. p and p" must, of course, be evaluated at the specular reflection point.

Direction of
incidence

(2 + y2)/2

FIG. 3-12: A BODY OF REVOLUTION

In many cases in determining the cross section of a simple shape we
find that there is one expression for '"mormal" incidence and a second expres-
sion for the cross section at "non-normal"” incidence. In these cases the cross
section (for short wavelengths) is much larger at normal incidence than at
non-normal aspects. When the actual vezlne of the cross section at the
non-normal aspects can be neglected, we might use, instead of the non-normal
incidence formulas, an expression giving the width of the peak. To obtain
such peak width formulas we require that the sum of the non-normal cross
section contributions be equal to the desired fraction of the normal incidence

value; such expressions are presented in Section 4.11.
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MONOSTATIC CROSS SECTION OF SIMPLE SHAPES

4,1 Introduction

In the preceding section we have presented in some detail the methods
to be employed in obtaining expressions for the radar cross sections of simple
shapes. Here in Section 4 we shall concenirate on the simple shape configura-
tions; i.e., ellipsoids, elliptic cones, cylinders, and thin wires, tori and
wire loops, the ogive, flat plates, the tapered wedge, corner reflectors (and
multiple scattering in general), and the paraboloid. These discussions will be

devoted primarily to the optics region.

4,2 The Ellipsoid

The ellipsoid has been found to be extremely useful in modeling parts
of aircraft and missiles, Ellipsoids of various dimensions model quite well
such components as the fuselage, the engine nacelles, the wing tanks, and the
wing tips. In most instances it is portions of prolate spheroids which are of
the greatest use and thus we shall concentrate on the prolate spheroid.

The equation of the ellipsoid can be taken to be

(%)2 + (.g_)’ + (%P =1 (4.2.1)

and the coordinate system employed is shown in Figure 4.2-1,

In the case of vanishingly small wavelengths we obtain, through the use
of equations (3.25) and (3.27), the folitwing expressions for the monostatic

cross section:

28
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FIG. 4.2-1: THE COORDINATE SYSTEM USED IN THE ELLIPSOID ANALYSIS

For the general ellipsoid

212 .2
¢ = Tabe — . (4.2.2)

(a® sin®9 cos?p + b? sin’ sin2¢ +¢? cos?6)

For the prolate spheroid (2 = b)

¢ = — ’;b4°?' . 4.2.3)
(b® sin“6 + ¢? cos?e)?

For the sphere (a =b =¢)
2
c = x8a . 4.2.4)

For larger wavelengths, still in the optics region, the application of

equation (3.17) to the prolate spheroid problem for the case of 6 = 0° yields

4 .
o _ . (b ( _ sin (2ke) , 1 -cos(2ke)
¢(0) =7 (;z”) - = + =" . (4.2.5)

In the Rayleigh region we can employ the methods presented in

Appendix B for incidence along the major axis,
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In the resonance region the methods of Appendix B are applicable, but
we should cidl attention to the work which has been done on the sphere and the
prolate spheroid whose ratio of major to minor axis is 10:1. A summary of
the work performed on the sphere is presented in Reference 6 and the efforts
expended on the 10:1 prolate spheroid are documented in References 7 and 8.
The radar cross section patterns for the sphere and the 10:1 prolate spheroid

-

";;z'n the resonance region (for incidence along the axis of revolution) are presented
ir‘x Figure 4.2-2,

The above ¢nables us to obtain good estimates of the radar cross section
contributions from ellipsoids used in modeling portions of aireraft ana missiles
over almost the entire range of wavelength-to-body dimensien ratios,

As an aid in the application of equation (4.2, 3) we present in Figures
4.2-3 and 4.2 4 graphical presentations of the cross section cof a prolate
spheroid for various values of the length-to-width ratio, % . Figure 4.2-3
shows the way in which the cross section at 8 = 0° varies with the ratio
% (1g _g_ < 15) for a fixed value of the sem1-minor axis, b, Figure 4,24
gives the ratio of o{(6} to ¢(0°) as a function of 8 for various values of _22. . The
"upper bound'' to this ratio (obtained by setting _tc’. = 0) is extremely useful in
deciding whether or not an aircraft component so modeled will contribute
significantly,

It ic of interest to compare the resuits obtained through the application

of equation (4. 2.2) with some recent experimental data on oblate spheroids

30
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FIG. 4,2-3: RADAR CROSS SECTION OF A PROLATE SPHEROID
(OPTICS) ~ THE NOSE -ON CROSS SECTION AS A
FUNCTION OF THE LENGTH-TO-WIDTH RATIO

(see equation (4.2,3))
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obtained at the Umiversity of California (Elect, Res, Lab., Quarterly Progress
Report, 1 April - 30 June 1958; Series No, 60, Issue No, 21; 15 July 1958). In
terms of the notation of equation (4.2.2), the experimental parameters were

a=b=2) ¢/x=1.5,1,0, 0.75, 0.50, and 0.25. The aspect can be defined

E
|
»
b.
b
-

by taking 6 = 96° and # = 0°, In the experiment, which was conducted at 9340 Mc,
the incident electric field was polarized along the minor axis and a three-inch
diameter spherc was used as a standard. The results of the experime 1t and

the theoretical value of cross section (compared to the return from the sphere)
are shown in the following table:

RADAR CROSS SECTION OF OBLATE SPHEROIDS - THEORY AND EXPERIMENT
(1n db above the return from a 3' diameter sphere)

a, b c Cross Section
Experimental Theoretical
| Measured Ave,
22 1.5 A 3.7
4,2 3.2 1
2.7
3.3 ]
2\ 1.0 X -0.2
0 0 -.8
0.2
2 0.75x -3.4
-4.3 4,2 -4.0
4.0
4.2
ZA 0.50x -9.6
-10,0 -10.2 -7.5
-10.€
-10.6
2x 0.25x -15.0
-14.2 -14.5 -13.6
-14,7
~-14.4
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B 4,3 _The Truncated Elliptic Conc®

£ ; The truncated elliptic cone has proved to be very useful in modeling

wing surfaces and portions of fuselage surfaces. The truncated cone is placed

in the coordinate system shown in Figure 4,3-1; the cone is assumed to be
: truncated by the planes z = L; and z = L with Ly > L;. The half-angle of the

cone in the xz-plane is taken to be a (i.e. tana = i—‘:- ). The ratio of a to b is

. * given by 7 and the direction to the transmitter-receiver is specified as shown

, zt in Figure 4.2-1, The equation of the cone is taken as

x? + n?y? = 2%tan’ 4.3.1)
; z

FIG. 4.3-1: THE TRUNCATED ELLIPTIC CONE

]
See Appendix B for a discussion of the finite cone at the nose-on aspect,

rnren.
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This can be written in the parametric form

x' = 2' tanacos '
1
V' =(-f?~) tanasin ' (4.3.2)
z! =2,
A small displacement on the surface can be written as

- A ) A
z t Y 4 vio+ 1y =
ds dx 1x dy ly dz' i Z

A A
(tana cos fr 1, + = tanasin " i, + 1) dz' +

7

A
(-sinp’ i+ L cos ! ,i\y) z' tan adp’., (4.3.3)

7

The surface area element is {from equation 4.3.3)
= —ai A _]; XA t '
&8 [( sin f 1x+,7cosp 1y)z tanad})] %

(4.3.4)
[(tanacos})‘/i\x + -:?- tana sinp"i\y + f\z) dz']

\)
= z' tana (M'i‘ +sinp'/i\ - tane ¢ ydapraar.
X y ? z

The projection of this on the direction of incidence is
cosf’ tana A

7

— a o opy A
dA = 2'tana dff'dz' ( i, +sinp’ iy -

(8in 6 cos p ?x+sin6 cos f 'i\,+cose fz)
. y (4.3.5)
= z'tanadf’ dz’ (77. 8in6 cos P cos ' + 8in 6@ sinP sin ' 7 cos § tana)

where the polar angles 8 and f are shown in Figure 4.2-1. The phase factor

on the surface is

e2ikp = exp. [—2ik(sin9 cosﬂ?x+ 8in 6 sin fy + cosefz)- (x' f\x+ y' /1;,+z' ?z)]

= exp. [-Zikz'(sine cosf tanacos ' + ;1?- 8in6 sin P tanasinp'-fcosoﬂ .
(4.3.6)
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The physical optics integral is g = fe?'ikp dA. There is a stationary
phase point at (the other stationary phase point is not on the illuminated side
of the cone)

37?7- (sinf cos tan o cosp’ + —,-17- sin@ sinf tan « sinp’ + cos6)
= sinf tana (~cosp sinf’ + -11-7- sinp cosp’) = 0
or

Vsinp + p? cos’p Vsin?p + n* cos’p (4.3.7)

Evaluation of the integration with respect to ¢' by the method of
stationary phase gives
g =~ j V rnztan @ < sinb -1 cosé tana)
k sin Vsin®p+n cosp \Vein®p + n%cosp 7
L,

x < -Zikz’(—lﬁ-sine tane sin’p + 1F cos®p + cosé) - %)
e

(4.3.8)

dez’ .

Unless the factor -:’— 8inf tana sin2¢ + 112 coszp + cos8 is nearly zero
(normal incidence) we may integrate this by parts and neglect the new integral
compared with the constant terms (this is a way of evaluating the two contri-

butions which come from the points z = L; and 2 = L) to obtain

ng Ty z'tana ( sin -1 cosd mna)
k sing Vain® +77° cos'p \ VEinP + )2 cos’p

1 ! Ly {4.3.9)
-zud(—,;,- 8ind tan a /zin@ + ncos’d + cosb) T
e
x .
- 21k (-,—17-ain9 mna Vain'p+ pcos'p+cosd) /|,
1
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Evaluation at the two Iimits gives the two contributions to the cross
scctiori, At normal mcidence the phiuse factor 1s a constant and equation (4.3, 8)

integrates to give:
L. 32 3/2
g = A by ) ¥ tan @ sing - 1 cosf tan a) .
3 k 5:n8 Vsin?p+ pcos @ \ Vsin?f + plcos’p 7

(4.3.10)

From the above we obtain expressions for the cross section which are

applicable only for sinf ) sina, At normal incidence the cross section is given

by 3/2 3/2?

3 _ 4
= 87 (L, L, :)3 tan*a (1.3.11)
oA 772 |cos 9'
where normal incidence is defined to be the direction given by
tan § = - N . (4.3.12)

tana Vsin?p + 1° cos“p
For non-normal incidence there are two independent scatterers, the
ends f the cone. If one of the ends of the cone is smoothly rounded then at
non-normal incidence its contribution would have to be computed by means of
a formula for the rounded end (for example the ellipsoid formula). The two

contributions are given by

2
3 sin6 - Lcoshtana
r = ALn tana ?sin!3+ U’cos’ﬁ
- T 2
8r sin6 Vsin2¢ + nzcoszﬂi sinf tana Vsmfpi' N*cos“P + ncos6
(4.3.13)

where L has the value L, or 1, depending on whether the contribution is from

the small end or the large end of the cone.
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For the truncated circular cone (2 = 1), equations (4.73.11) and (4.3,12)

become
87 - 3[2 3)2 2 sina
= - L - L — 4.3.14
9 [ 2 1 costa ( )
and
o = |ALtane |pn2gq) | (4.3.15)

8 r sinf

A graphical presentation of equation (4.3.14) is given in Figure 4.3.2 and a
graphical przsentation of the relation between normal aspect to a cone and the

angles @, 6, and { is given in Figure 4.3.3.

4.4 The Cylinder and the Thin Wire

The cylinder has proved to be very useful in modeling portions of a
fuselage, a wing tank, an engine nacelle, etc. Very thin cylinders, that is
circular cylinders whose radii are very small in comparison with the wavelength,
have been extremely useful in modeling the sharp edges of some wing surfaces;
these very thin cylinders are referred to here as thin wires,

For the case in which the wavelength is small in comparison with both the
length and the radius of the cylinder, the cross section formulas can be obtained
as limiting cases of the results obtained for the truncated elliptic cone (i.e.,
equations (4.3.11) and (4.3.13) ). To accomplish this let tana = _I% 21,21, -L,

129 oo. The results obtained are for the C);linder at normal incidence (6 = 90°)

ar L2 az b2 (4.4.1)

o =
X [az cos?p +b° sm’p] 312
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and for non-normal incidence we have two components (assuming that the ¢nds

are not rounded or smoothed in any manner) cach equal to

A2 b2 sind (4.4.2)

o = .
8 cosze[azcosng + bzsin2¢] 3/2

For a circular cylinder these expressions reduce to

¢ = 271 (4.4.3)
A
and
o = Aasing (4.4.4)
87 cos? 0
respectively,

The application of equation (3.17) will yield an expression for the
cross section at the off-normal aspects which incorporates the phase between
the contributions from the two ends of the cylinder, The exnression is more
complicated and not so convenient to apply as those given above, but if knowledge
o1 the oscillations in the cross section as a function of aspect is required, this
result can prove to be extremely valuable, The expression so obtained for a

circular cylinder of length L and radius a is

. 2
¢ = ra® gin’g M) (A% + B?) (4.4.5)

cos 8

where
A = J,(2ka sinf ) with J; the Bessel function of the first order,
B = (2/x) -5 {2ka sinf ) with S, the Struve function of the first order,

6 = the angle between the cylinder axis and the direction of incidence. *

* As an aid to computation the expression (A2+B?) is presented graphically as &
function of (a 8in® /A) in Figures 4.4-1 and 4,4-2.
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FIG. 4.4-1: THE EXPRESSION (A’ + BY) OF EQUATION (4.4.5) - I
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The above is for cylinders whose dimensions are large in comparison
with the wavelength; let us now turn our attention to the case in which the
radius, a, 1s very small in terms of the wavelength; i.e., to the thin wire case.

We will consider first the cross section of a perfectly conducting wire
which is many wavelengths long but only a fraction of a wavelength thick. Per-

haps the simplest formula which is in good agreement with experiment is Chu's

£ 2
formula (Ref, 9) sin(ﬁ'}'_ cose)
Lz . 29 A
7L sin 2rL cosf
o = ¢ COSZ¢ = A COS4¢
e 2 A 2
(L) +(m A __
2 Y 7 a sinf
(4.4.6)

where L is the length of the wire, a is the radius of the wire, ¥ =1.78...,

6 is the angle between the wire and the direction of incidence, and § is the
angle between the polarization direction and the plane formed by the wire and
the direction of incidence. No attempt will be made here to derive this formula.
Except for 0 near 90° the two tips of the wire scatter essentially independently.
A slight change in 6 has a pronounced effect on the relative phase of the two
components so that there is a rapid oscillation, the components sometimes
adding and sometimes cancelling, When we approximate a part of the aircraft
by a thin wire we will not be able to determine the relative phase of the two
components accurately so that the proper picture is to replace the wire by two
independent scatterers (except for 6 near 90°) each having an effective cross

section given by
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2.2 4
T, = - A" tan” 6 cos @ . (4.4.7)

2 2
167 [(-‘—) + (ln —-A )]
2 17 2 5in@

At 6 = 90° equation (4.4.7) diverges while equation (4.4.6) does not.

The reason for this is that at this one aspect the wire acts as a single scatterer,

For 6 = 90° then we must use equation (4.4.6) which reduces to;

- _nitleos’ - 4.4.8)
(2P + (m _%_)2
2 Yra

Now let us turn our attention to the case of wires whose length is

(S

comparable to the wavelength, The approximation technique employed here is
derived from the work of Van Vleck, Bloch, and Hammermesh (Ref. 9). In
Reference 9, the radar cross section, o, the average return for fixed direction
of incidence but random polarization, o(6), and the average cross section for

all aspects and polarizations, o, are related by the following equations:

F = _I_Ha sin6 d6 df , (4.4.9)
4r
o) = -1 | o adp , (4.4.10)
2x
/2
7 = f «(6) sin6 do , and (4.4.11)
0
8 4
¢ = - cos AU (4.4.12)
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where the angle 8 is as shown in Figure 4,4-3. The angle ¢ is the angle between
the electric field of the incident wave and the plane formed by the direction of

incidence and the wire (i.e. the plane of Figure 4.4-3),

Direction fo
radar

F'G. 4.4-3: THE THIN WIRE COORDINATE SYSTEM

‘erence 9 contains plots of ’Aa) vs 6 for the case of E‘X. equal tc 0.5,

1.5, 2.0, and 1.25, If the wire in question is one of tLese in size then direct
readings from these plots combined with the application of equation (4.4.12) will
vield the desired estimate of the cross section; these forr plots are reproduced
in Figure 4.44.

A complete presentation of Methods A and B will be found in Reference 9.
All of the data presented in Figure 4.4-4 is for a wire of radius equal to 1/900
of its length; it can be expected, however, that over a wide range of radius values
these angular distributions of wire response will be appropriate. This is illus-
trated in Reference 9 in the determination of .{} for wires of three different radii:
their Figure 2, which contains these results, is reproduced ir Figure 4.4-5,
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FIG. 4.4-4: ANGULAR DISTRIBUTION OF RESPONSE OF WIRES (REF. 9)

(L/a = 900 where a = radijus of wire; A- -Method A, B--Method B,
C--Chu's formula)
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If other wire lengths are of interest in a specific problem one can employ
either Method A or Method B as given in Reference 9, the Chu formula, or one
can apply an approximation process based upon the material of Reference 9.
This approximation procedure involves using the plot of —"'-g)— s (6= 900) given
in Reference 8 combined with the informaiion presented in Reference 10 relative

to angular variation in response tcgether with equations (4.4.9) through (4.4.12),
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FIG. 4.4-5: RADAR RESPONSE OF WIRES - AVERAGE CROSS SECTION
(225< L/a < 900)
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The 90° plot referr d to above is shown in Figure 4,4-6 where the data of
Reference 9 is compared with the Chu estimate, We see that the Chu formula
suffices for wires which are more than two to three wavelengths long, The
cases of wires which are one wavelength and three-fourths of a wavelength long
will be discussed to illustrate the approximation process referred to above.

For the wire of length A we know from Reference 9 that

-% ~ 0.163 and _d?_)fifi_ ~ 0.04 at 6=90°,
2

From Reference 10 we find that ﬂe—)fsiﬁ takes on its maximum value at
0 =~ 540. Using this information together with data about the location {in 6) of

the half-power points (Ref. 10), a broken line graph approximation of the curve

ﬂﬂ;ﬁi vs 6 can be obtained. In doing this we employ the knowledge that

X

72

J’ !_iﬂlzii_ni de =~ 0.163 . (4.4.13)
X

0

For the wire of length 3)\/4 we find (from Ref. 5) that

x[2

f <0 Einb 49~ 0,023 (4.4.14)
X

0

and

Eﬁ@l—z@.’iz 0.04 at 6=90°.
X

Since a wire which is three-fourths of a wavelength long is a "'non-resonant"

wire we cana employ equation (13) of Reference 9 to obtain values of ﬂ%‘ﬂ‘ﬁ

at a few values of ¢ (say 30°, 600, and 75°) and then fair a curve through these
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FIG. 4.4-6: RADAR CROSS SECTION OF THIN WIRES AS A FUNCTION

OF WIRE LENGTH, L, (6 = %%
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points using the area integral in equation (4.4.14) as a check on the resulting
curve, Figure 4.4-7 shows the results obtained for these two cases; the half~

wavelength wire is also included in the figure.
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FE

It should be repeated that the above considerations are based upon the

analysis of wires for which L /a =900. In view of the data presented in

¢ o T b I

Figure 4.4-5, however, it can be concluded that these estimates should still be
appropriate for a wide range of wire radii, To investigate this point further,

the cross section of a thin wire is plotted as a function of wire radius for 8 = 90°
in Figure 4.4-8. In addition to the wire estimate, the optics expression for a
cylinder is extended into this region of wire radius space as well as the cylinder
data obtained from Mentzer (Ref. 11). We see from Figure 4.4-8 that the cross
section of a wire of given length does not change rapidly with changes in wire
radius and thus that the methodology presented here for a wire whose radius is
1/900 of its length can be consjdered appropriate for almost all "‘wire' computa-
tions which arise in connection with problems of estimating the cross section of
an aircraft or a missile,

Th2 work of Weber (Ref. 12) is also very useful in the consideration of
wircs whose lengths are less than 0.8, both for the monostatic and bistatic
cases. This point will be discussed in Section 5.

Van Vieck, Bloch, and Hammermesh in Reference 9 also give some
consideration to the very short wire case, a wire whose length is such that
AM.L 3 10. The expression they obtain for the cross section is (in the notation

employed here)
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s = (X2/om) @L/X° cozs“p sine (4.4.15)
[1-1mer/a)

From this expression we see that if A/L 2> 10 and L/a } 10, then it follows

that o /3 8.5 x 105, The magnitude of the return from such wires is

relatively so small as to make it possible to neglect such wires in most problems

of determining the cross section of an aircraft or missile.

)
4,5 The Torus and the Wire Loop

The coordinate system employed in the analysis of the wire loop and the
general torus is as shown in Figure 4.5~.; the polar angles are as given in

Figure 4.2-1.

2b

FIG. 4.5-1: TWO VIEWS NF THE TORUS (WIRE LOOP)

When the wavelength is small in comparison with both a and b we proceed
as follows: For off-normal incidence the cross section is obtained by use of
equations {3.25! and {3.29). The equation of the torus is taken as

(p-at+2’ = ‘o5 . (4.5.1)
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From equation (4.5.1) we find the p'' needed for equation (3,29). There are
two contributions to the cross section, one where the incident wave hits the
"outside'' of the torus and the other where the wave hits the "inside'' of the

torus. In the two cases we have p =a + b sint and p =a - bsin6 respectively,

e ————. e o I Vit I 1S AN e £

Substitution in the resulting form of equation (3.29) yields the two coﬁfwns

(it should be noted that the second contribution exists only if the inside of the

torus is not shadowed by the outside; i.e. only if b/(2a) < ,cosel). To obtain

. . a AP

the expression for the normal aspect we make use of equation (3.17).

Thus, for the short wavelength case we have at normal incidence (6 = 0°)

3, .2
¢ = Sx'ba” (4.5.2)
)Y
and for 8 3> 0 we have the two contributions
r = 1(——}?—9‘— +b2) (4.5.3)
sin@
and .
{
T = 1( ba -bz) . (4.5.4) :
5in@

In the range 0 £ lcosel < b/(2a) the second contribution (eq. 4.5.4) is no
longer present,

If b is very small in comparison to the wavelength the torus takes on the
form of a wire loop. The cross section of a wire loop takes on a resonant peak
in the vicinity of ka = 1 and the magnitude of the cross section at this peak is

relatively independent of the wire radius. To obtain an estimate of the cross

section of a wire loop on the optics side of this resonant peak we extend the

methods used on the ''straight thin wire''., We shall do this first for a wire
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which has a radius of about 1/85 of a wavelength (a value chosen for convenience
in computation) after which we shall consider the case for arbitrary (but small)
values of b.
The scattered field from a small straight piece of a thin wire is like that
of a dipole so that it has the form
ikR

A
E5=Cdlﬁx(ﬁx£)e (4.5.5)
R

where C is a constant to be determined, d£ is the length of the piece of wire,
A
R is the vector from the piece of wire to the field poir-, and £ is a unit vector
A
along the piece of wire. At normal incidence with the jolarization parallel to £ ,

the cross section is )

ﬁs (L)
—f— = m——, (4.5.6)
i | r

. 2
¢ =lim 4rr
r-+m

A A
If 6 is the polarization vector then C is proportional to 6 « L. Thus let C=C, (B-l).
A PR
For the case io whick equation (4.5.6) applies we have 6- 4 - lﬁ x (RxXZ) | = 1.

Substitution of equation (4.5.5) into equation (4.5.6) gives

2 2
@y M ] @d (4.5.7)

g lfi Iz

*
It is here that the assumption that the wire radius is /85 is made. The

\ expression on ihe right side of the equation ig obtained frora the Chu formula
for a wire radius set equal to XA/ 85,
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Substitution back finally gives {taking into account the phase leg in making the

round trip from the radar to the wire and back to the radar)

- 62\ p ﬁx(ﬁxz\) 2ikR
E, = - [i! d(———§-~—-~ e (4.5.8)

Thus, corresponding to the physical optics formula for the cross section (equa-

tion 3.17), we have, in the case of a thin wire

=1 212, 5, =1 |A, 2|2
o= |g| o, = lp‘g]
where,
N A A A A 21'}:,“1
8=S(§:4)Rx(Rxl)e T4k, (4.5.9)

A
Due to the relation 6 « R =0 we can also write

A 2P 2
S(ﬁ-l,)z e at| . (4.5.10)

1
o = —
e T

The integration in both equation (4.5.9) and (4.5.10) is taken along the wire.
'I'p.e edge of a trunceted ogive gives a thin wire contribution where the thin wire
is a loop in the x-v plane as shown in Figure 4.5~2. The thin wire contribution
is given in general by cquation (4.5.10). To evaluate this for 2 loop consider
that on the wire we have x' = a cosf)’, y'=asinf', and al =m = adp’
?( =’1\x sing + ’i\zcoso. The direction of the dipole is ,2= -slnﬁ'%*-cosﬁ'll\y. We
nave k. T - (Jﬁx + y"i\y) vk = a sing cosf'. The polarization vector is
3 * ~cusl sin'{?x + cos Y"i\y + einfd sini'i\z, whare ¥ I8 the angle batweea the
polarizaticn veotor and the y-axis. Substitution into equation (4.5.10) gives finally
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FIG. 4.5-2: WIRE LOOP

For 6 = 0, equation {4.5.11) gives L raz. For 6 enough greater
than zero that Zka sin9 >> 1, we can use the asymptotic expansions for the

Bessel functions:

r -
Jo(z) ~ _.Z__l cos(z-x/4) + A sin(z-x/4) - 9 cos(z-7/4) +...
" 8z 12822

T L

z Z |

2 ™
= 73 ! (c0326 sin’y +cosz)')JU(2ka sin@) + [ (00529 sinz‘)' —cosz}')JZ(Zka sinB)}

240, 2 .l 1,
(cos®d sin @'sin”Y+2cos@sinfcosfPsinYcosy

(4.5.11)

4

(4.5.12)

Jz(z) ~ ‘/_u._z.z_l - cos(z-x/4) + _;-‘.’_ sin{z-x/4) + 121802 cos(z-x/4) +.. .. .

2
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Using equation (4.5, 12) and the average values of sinz(Zka sinf —1r/4),
sin(2ka sin@ -7/4)cos(2ka sin@ -7 /4), and cos?(2ka sinf -x/4) (which are 1/2,

0, and 1/2 respectively) in equation (4.5.11) we obtain
(4.5.13)
ax cos4'}‘ + 8cos? 6 siny - 8cos2 sirf Y coL ¥ -cos? ¥

Average ¢, ~ _
L 32 (ka sing)?

(S

Except when cos 7 is nearly zero the first term in braces is sufficient

and the cross seciion becomes B a? for

6 ~ %ﬂ . (4. 5. 14)
aj

For cos ¥ =0, the cross section becomes Bxa? when

6 ~ A . (4.5.15

(21)473331]3

The above analysis is carried out for a wire of radius equal to about
1/85 of a wavelength; an approximation for a wire of arbitrary radius can be
obtained by replacing the right hand member of equation (4.5.6) by one which
invclves the wire radius; that is, for example, Chu's formula, This substitu~
tion into equation (4.5.6) results, upon the application of the steps cutiined in
the equations following (4.5.6), in the following expression for the cross section

when @ = o°

o (/2 +Qn(Es/¥e)) (4.5.18)"
7a (/27 + (In(\y 7b))

where b = the wire radius, a = the loop radius, and ¥ =1.78.... .

*A plot of equation (4.5, 16) is given in Figure 4.5-3; one will observe that the cross
section i8 not critically denendent upon the radius of the wire for small values of b.
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The situation for § = 0° for various si1zed wires has been investigated

by Kouyoumjian (Ref, 13). Kouyoumjian's results are shown in Figure 4.5-4
together with the corresponding values derived from equation (4.5. 16).

‘ Co ) Kouyoumjian in his paper, 'The Calculation of the Echo Area of Several
a Scatterers of Simple Geometry by the Variational Method,’ which he presented

' at the Symposium on Microwave Optics at McGill University in June 1953 gives
us a relation between the return from a wire loop at 8 = 0° and at 6 = 90°. This

relationship is displayed in Figure 4.5-5 where we note that if the loop radius is

4
about 0. 10 of a wavelength we can expect a return like that from a small sphere.

4.6 The Ogive

v , 4.6.1 The Complete Ogive
Methods for obtaining the cross section of an ogive in tlie Rayleigh region

are discussed in Appendix B. Thus, let us first consider the case of the cross

- section for very small wavelengths. The coordinate system employed in this

discussion is shown in Figure 4.6-1. We see from Figrire 4.6-1 that the ogive
is obtained by rotating an arc of a circle of radius Rlabout a chord located a dis-

tance Rl-a from the center of the circle. This results in an ogive of length L and

half-angle & which are related to Rla.nd a by the equations

L =VR21-(Bl-a)! ] (1.6.1)

cosa = 1-(a/R,) and >
Using the cylindrical coordinates (w, @, z) the equation of the surface is
w+R-af+2’ = &) , (4.6.2)
with|z| € Lf2and 0w  a.
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FIG. 4.6-1: THE OGIVE ~ GRAPHICAL DEFINITION OF THE
COORDINATE SYSTEM

Applying the optics approach defined by equation (3.17) and ignoring all
coutridutions except that from the tip we find that for 0° € 8 < (90° - a) we have
4

2
a(6) = A_tan a 5 (4.6.3)
16x cos49 (1 ~-tan

a tanze):3

with V 5.74131/\'*& < (x/2) - YN4R,.

At @ = 90° - a we find that the cross section is given by

v (80%-a) =l§§iin_’2L -8 (4.0.4)
¥ (4x tan¥(a/2))

In the region{20° - < 8 < 80°, the application of equation (3-25) yields

the expression
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= gR(1-Rima
v (6) ﬂRl(l Fos ) (4.6.5) i

The symmetry of the body is such that we have o (6) = o(r - 6}.

It is of interest to check the behavior of equation (4.6.3) at 8 = 0° fo1
large half-angle ogi es since as the half-angle approaches 90° the body takes
on the shape of a sphere.

Since wa is the cross section of the sphere (4t trese small wavelengths),

let us consider the ratic o (0°)/1rR"’1 using the expression in equation (4.5.3).
ogive

Employing the maximum value of @ indicated under equation (4.6.3), we find that

7). l/ ) : (4.6.5)
T R"’ ’Rl

Since the limit of x cot(x) is 1 as x approaches zero, it follows that the maximum

value of thz nose-on cross section for an ogive predicted by equztion (4.6.3) is
2
7RI,
As pointed out in Reference 4, a better approximation for the aear nose-on

aspects of thin ogives is given by

a(0) = (z/(-1 +cin(kL))’2 (i(a,‘.)4 ¥ lax (4.6.7
where
o = { ..._.“_k_‘g_.__] sin[(kL/Z) (l—cose)] ’ ‘
(1 -coz6) K
and 1

Cin(x) =- modified cosine integral of argument x.
As an aid to the application of aquation (4.6.7) a plot of F' = I/{ (-1 +Cin(kL))z}
is presented in Figure 4.6-2. This substitution results in eouation (4,6.7)

being condensed into the form
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o0 = F'E6 " x). (4.6.8)
For the nose-on case we again note from Reference 4 that in the
resonance region for thin ogives a better approximation to the cross section

is given by

2, 4
A“tante oaX (4.6.9)
167 2

e (0% =

From the work of Fock (Ref., 14) an estimate can be found for a lower bound of
ka for which the current on the rear has attenuated sufficiently to justify the
neglect of the contribution from the rear. It is assumed that an attenuation of

the current reaching the rear tip to less than one-tenth of the current at the
shadow boundary is required to insure that the front tip contribution dominates.
Using Fock's expressions for the current on the rear of the sphere, the minimum
kR, for which attenuation to onz-tenth takes place is plotted against the half-angle
of the ogive in Figure 4.6-3. It is seen that for thin ogives (say a < 30°) kR,
must be greater thar 200 in order for the tip contribution to dominate (that is,

in order for equation (4.6.3) to be appropriate at 8 = 0°).

4.6.2 The Truncated Ogive

Let us consider an ogive truncated in the manner shown in Figure 4.6-4.
That is, z is limited by the relation
|7 € LANR (4.6.10)
Let ihe radius of the circle cut by this truncation plane z = b from the ogive
have a radius = a'. The application of the optics methods defined by equation

(3.17) indicates that for incidence along the z-axis the cross section is given by
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' 2 2 '
; - c = ma")" tan~ (a") (4.6.11)

where o' is the angle between the z-axis and the ogive tangent plane where the
ogive is truncated. For 0< 6< a' and9((90° -a) there are two contributions

f | T to the cross section given by

2 .
M'at:r;'(g +a') and Aa‘atan"’i(g -e) | (4.6.12)
in w 8S1in

For '€ 6 € 90° - a' (a range which exists only when a' < 45°), the second of
these contributions is absent. For the remaining values of 8 (6 < 90°) the ap-
proach used for the entire ogive in Section 4.6. 1 is applicable (i.e., equation
4.6.5).
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The expressions given above for the cross section of a truncated ogive

are those obtainedr by physical optics through the application of equation (5.17).
If the truncation of the ogive resuits in an opening then this alsc must be treated.
If the rim is vharp, then the wire loor contribution should be added to the con-
tribution obtained from equations (4.6.11) and (4.6, 12); this can be dcne using
the methods given 1n Section 4,5, If this truncaticn leaves a flat plate, then the
methods discussed in Section 4.7 should be used.

JOften one is ~onfronted with an ogival shape which is t-runcaced with 4
sphere {see Fig. 4.6-5). The approach one can use for this bocy is similar to
that used tor the complete ogive and in fact results in the upper oound for the
"creeping wave'' contritution from the reai of the ogive given in equation (4.6.9).

The sphere cross section can be deconiposed into a geometrical optics
term plus a diffraction term; the optics term comes from the region of specular
reflection and the diffraction tern: from the effects of the currents induced in
the shadow region and near the shadow boundary, This censideration leads us
to attempt to approximate the ''contribution from the rear" for a shape like that
shown in Figure 4.6-3 by using known sphere results. Reauing values of the
cross section from the exact spher« curve (see Fig. 4.2-2) we ouirin the following
estimate foi this rear coniribution

5/
Treaz . = 1,03 (¥2) /2 (4.6.13)

n

r a”
where the a is as shown in Figure 4.6-5. Experience ha3 shown this to be a
good estimate fo. values of ka [rora ? up o about 15. For larger values of ku

let us employ the physicsl optics expression for the cross sention of a sphere,

1
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Although physical opties dors not accurately predict the loration of the
relative maxima and minima it dues predict with reasonable accuracy the
amplitude of these relative maxima. The sphere cross section in the physical
optics region is given by equation (4.2.5). This expression takes or a maximum
value whenever 2ka = (4n+3)1r/2. With the approximation ra® used for the con-

tribution from the first Fresnel zone, we have

R e e RPN FZ AT

FIG. 4.6-5: AN OGIVE CAPPFD BY A SPHERE

L g ey

Ll

( 7a” + V;ﬁm)z ~ 7ra’ (1-!~~--;—--)2 (4.6.14)

rear 2ka

A :gﬂ«f@'-«

from which is obtained

T = TR (4.6.15)
Tear 4(ka)

2

A
> -1--'-, . (4.6.16)
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A maximum value for the contribution from the rear can be obtained by

assuming that ¢ = ra2 + o rear in equation (4.2.5) and maximizing the right

hand side of the equation; this results in the a\/2 estimate of equation (4.6.9).
As an aid in computation a plot of equation (4.6.13) is given below in

Figure 4.6-6. A much more detailed computation of this ''contribution from

the rear'' was made by V. E. Pound of the Cornell Aeronautical Laboratory,

‘ Incorporated (in C.A. L, Internal Memorandum No. 830-141). The results of

Pound's computation is also shown in Figure 4.6-6.

4.7 The Flat Plate

In this consideration of a flat plate let us assume that the plate is located
in the x-y plane with the polar angles defining the direction of incidence as

indicated in Figure 4.2-1.

4.7.1 The Rectangular Flat Plate

Employing the physical optics approach of equation (3.17) we find that
for a rectangular flat plate 2a by 2b (the 2a dimension along the x-axis and the
2b dimension along the y-axis) we have for 8 = 0°

2.2
o = S4xa b “@.7. 1)
kz

In the y-z plane (P = 90° or 270°%) there are two components each given by

2
c = ._......_.‘z . 4.17.2)
rain® 0

In the x-z plane (f = 0° or 1800) there are two components each given by

U'
’ - -""“"r ] (40703)
7z 8in" @
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For other aspects there are four components each given by

2 2
c = A cos d ) 4.7.4)

6473 sin 6 sin2¢ coszp

4.7.2 The Circular Flat Plate

The circular flat plate or disc cross section formula is

2
- = _@;__ []1 (M)jl , (4.7.5)
tan" @ A

where a = the radius of the disc and J,(x) is the Bessel function of the first
kind., When the asymptotic formula for the Bessel function is used (kasin 63>1)
it is found that the scattering is due to two components with the magnitudes

given by al . (4.17.6)
8r sinf tan%@

4 7.3 The General Flat Plate

With the flat plate located in the xy-plane we have for normal

incidence (8 = 0°)

47 A?
2

’ (4.7.7)

where A is the area of the plate. For non-normal incidence we have by

extending the resuilts obtained for the circular disc that there is a contribution

to the cross section from each point on the boundary of the plate at which the

boundary is perpendicular to the direction of incidence. If a is the radius of ’
curvature of the boundary at this point (and a is finite) then the contribution is

as given in equation (4.7.6). If a is infinite then the plate in-question would be,
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at least in part, rectangular and the approach of Section 4.7.1 would apply.

In the case of an elliptical disc defined by the equation
x \? y 2
(.a_) ,,(b) =1 (4.7.8)
we find for 6 > 0°

- Aa®b?
. = ) (4.7.9)
87 sind taxxze(azcos'7‘[b+b2 sirxsz)372

4.8 The Tapered Wedge

We shall postpone the consideration of the tapered wedge (shown in
Figure. 4.8-1) for the present; it is discussed in Appendix A in considerable
detail for general polarizations (see Section 6.6). We will remark, however,
that over a wide range of aspects the return is dominated by the sharp edge of
the tapered wedge, which may be treated as a thin wire. It will be observed

that for

(1/tan @) < tan@ cosp

the tapered wedge looks like a cylinder for short wavelengths.

-

FIG. 4.8-1: THE TAPERED WEDGE
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4.9 Corner Reflectors and Multiple Reflectors

The subject of corner reflectors and multiple reflectors in general has
been discussed in a previous University of Michigan Report. We are including
the material of that report in its entirety as Appendix C to thisreport and thus
the reader is referred to Appendix C for the discussion of corner reflectors.*
We will, however, in the present section make a few comments on double
reflections,

The methods of geometric optics are applied in this analysis of multiple
reflections and the case of multiple scattering by N bodies is discussed in Ap-
pendix C. Here we resirict our attention to the case of N = 2, Approximating
each pair of aircraft components in the vicinity of the reflecting points by the

surfaces
x3 y 2
i + i

2pj1 2p;2

]
'
N

(i = 1and?2) (4.9.1)

where the z; axes are oriented in the direction of the normals to the surfaces

A A k%
(thus iy 1z2 ) and
SRCTPE JOT S SO S S
Xy 'Xg 'lxx in_YI X2 ¥y in ’

the material of Appendix C indicates that the double-reflection contribution to

the cross section is given by

*
Additional comments on corner reflectors will be found in Appendix D.
* %
In order for the reflected ray to return in the direction from which it came it

is necessary that the normals to the two surfaces at the reflecting points be
perpendicular,

K

e 8



(4.9.2)
- = T P11 P12 P21 P22

b2 sin(ZC)[sin(ZZ,’H %?i cos§ + %lsint][2+%3 cosZ,‘+-%2-2- Sin:] .

The geometry of the situation as well as graphical defninitions of the parameters

{ and b are given in Figure 4.9-1.

\e— b
\

|
|
|
|
|
\

FIG. 4.9-1: DOUBLE REFLECTIONS (showing one of the two rays;
the other ray follows the reverse path)

In the cases corresponding to £ = 0° or 900, one body is in the shadow
of the other, or a tri; e reflection is involved. For these reasons it is thought
to be desirable to limit the application of equation (4.9.2) to the range 15°<K ¢

&£ 750. With this restriction we see that the double-reflection contribution is

bounded by the relation
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2T P11 P12 P21 P22
r < .__,~___~_L_

b2

. (4.9.3)

This inequality is extremely useful in determining the question of whether
double reflections need be considered in the problem of estimating the cross
section of a given aircraft. Often one is presented with a situation in which
the b is zero. The above expression can be made to yield an estimate of ;he
cross section in such a case if one of the p's is infinite. For example suppose

that b = 0 and py; = o0 . Equation (4.9.2) can be rewritten in the form

(4.9.4)
T P11 P12 P21
o = b
sin(zg‘)[b sin(2§) + pyy cosl +pyy sin;] [2 2+ L2 cosl +sint]
P2 Pz
from which it follows that
T P11 P12 P2
limg = e : 4.9.5)
b —0 sing sin(Zt)[ pgg cosl + pyq Sin {]

P22 —pe0

4.10 The Paraboloid

For a paraboioid defined by the equation ®+ yz = - 4pz and with the

direction to the radar defined as in Figure 4.2-1 the methods of geometric

16x !
o(6) = (l +cos(29)5’

= 4% pzsec48 .

optics yield

(4.10.1)

7%

5
K




The above gives the value of the cross section of the infinite paraboloid. In
using a paraboloid to model the nose section of a fuselage or a wing tank one,of
course,is dealing with a truncated or smoothed paraboloid and care must be
taken to add the contributions from the truncated rear of the paraboloid.

It is shown in Reference 18 (and in Reference 15) that equation (4.10.1)
vields the exact cross section for incidence along the axis of symmetry; that is,

for 8 = 0°,

4.1i1 Summary

In this section we have presented the methods of approach tc be used in
determining the radar cross sections of the simple shapes used in modeling the
components of an aircraft or a missile. As stated earlier our knowledge of
radar cross sections, even for simple shapes, is far from being complete; the
state of the art is such that good approximations are available in the optics region
and in the Rayleigh region but the knowledge of the behavior of the cross section
of a given shape in the resonance region is, by comparison, quite meager. Thus,

it is not surprising that from time to time one will be confronted with a complex

shape for which the methods and formulas presented here are not completely
adequate. In such a case it is often possible to obtain the necessary information

from a judicious analysis of existing experimental data on shapes of "'similar"

size and shape, That is, apply the methods given here to the study of the ''ex-
perimental configuration' and by working backwards obtain an estimate of the

contribution of the simple shape component of the '"experimental configuration'',
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We shall close this discussion of simple shape cross sections in the
optics region (and that has been the region of primary concern in this section)
with a brief examination of the peak width method of approach.

To obtain an estimate of peak width (i.e. the aspects at which the cross
section is only 1/2, 1/10, 1/100, etc. of its value at the *normal" aspect) we
require that the average cross section for non-normal incidence be (1/N) times
the cross section at normal incidence, solve the resulting equation for the aspect
angle and thus obtain solutions 6y at which the cross section is only (1 [N)th of
the value at the peak.

This situation arises when the body in question has one principal radius
of curvature which is infinite; the bodies discussed in this section having this
property are the Cone, the Cylinder, the Thin Wire, the Torus, the Wire Loop,
and the Flat Plate. The thin wire situation is discussed in Section 4.1 and the
case of the wire loop in Section 4.5 {equations 4.5.14 and 4.5.15); here we shall
restrict our attention to the cone, the cylinder, the torus, and the circular flat

plate.

The Cylinder: The cross section of an elliptic cylinder at normal aspect (6 = 90°)

is given by equation (4.4.1) and the cross section contribution of each end of the
cylinder is given by equation (4.4.2). Tuaus, if the sum of the two non-normal-

incidence cross sections is to be (1/N)th of the cross section at 8 = 90°, we have

A 2 b? SiHON
0+ bzsinzﬁ)ép—

27 L2 a% p? = 2N
Ma?® cos?p +b? sm3¢)3/ ¢

2 2,
?w cos GN (a“zos

81

. (4.11.1)




This expression reduces to

(sinfly _ 8Lr’
cos’ Ox N2

’ (4.11.2)

and for small A(GN close to 90°) this is approximately equivalent to
cos’y = (N/2) (W27L) . 4.11.3)
From the above we obtain

By = (/2 + (N/2* (M2 aL) (4.11.4)

as the measure of the peak width; i.e., the angles at which the cross section is
down by a factor of N from its value at 6 = 90°,

It should be noted that the above assumes that both ends of the cyiinder
are sharply terminated. If one end is smoothly faired into another body (such as
a sphere or an ogive) then equation (4.11.1) would have to be appropriately
modified.

The Truncated Cone: The cross section at normal aspect (defined by eq. 4.3.12)

is given Ly equation (4.3.11) and the cross section contributions at the non-normal
aspects are given by equation (4.3.13). If we assume that the truncated cone is

sharply terminated at each end, then the equation we obtain for the determination

of the 6 1s
3/2 322 4 3
&r(l, -L, )Jtanx _ NML;+Lp)n" tana
9).17Z cos38| 8x sinf) (sin’+ nzcoszﬂ)llZ
(4.11.5)
( 8ing cosen tan o
x4 (sin‘p+m 2cos n .
8in6), tana (sinz¢+ nzcoszﬁ)‘/ s N cosly
\
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Making use of the expression for 9.1. given in equation (4. 3. 12), we find that

equation {4.11.5) may be rewritten in the form

32 322 (4.11.6)
64”2(14 “Ll ) 2 2 .2 2 2 n 2
(n +tan’a (sinp+n°cos p) =
9N 2 (L, + Ly) tan(6) - 6,)
from which we obtain the measure of the peak width
0y -0 = 372 32 (1 +tana(sin’p+n’cosP)) .
8r(L;' -L; )
(4.11.7)
For the case of a circular cone (n = 1) we have
I YN(L,+L) cosa
ON-Q_L 4.11.8)

Bx(LgS/Z -L13/2)

The Torus: The cross section at normal incidence (9 = 0°) for the torus is
given by equation (4.5.2) and the non-normal incidence contributions are given

by equations (4.5.3) and (4.5.4). Thus to determine GN we have

3,2
i’-;‘li— = N(2ba #/ sin6y) . (4.11.9)

From which we readily obtain (for small A)

lon| = Nyara) . (4.11.10)

The Circular Flat Plate: To determine eN for a circular flat plate (for small N\

we employ the expressions given in Section 4.7 to obtain

dx (xad P 4

B e,

2N .
by 8x 8inf); tan? By (a2 )3/2 )

(4.11.11)
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from which we obtain

l eNI = YEE e . (4.11.12)

- e e = e we m

The peak width results for the cylinder, the torus, and the circular
flat plate are shown graphically in Figures 4.11-1 through 4.11-3 (where the
magnitude of (9N - 0) is plotted against N for four different values of the ratio
of wavelength-to-body dimension. The material of these figures will make it
possible to obtain a good estimate of the peak width for almost all cylinders,
torii, and circular flat plates as long as the wavelength is nu greater than

0.3 times the critical body dimension.
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BISTATIC RADAR CROSS SECTIONS

5.1 Bistatic Cross_Sections For Angles of Separation Lees Than 1800.

Bistatic cross sections for small wavelengths have been discussed in
considerable detail in Reference 15 where the cross sections of several simple
shzpes are presented. There is, however, a very simple relationship which
exists between the monostatic and bistatic cross sections that permits the
determination of the bistatic cruss section in terms of the monostatic results
presented elsewhere in this repsrt. Thus, we shall direct our attention to
thia relationchip which we shal! present in the form of a theorem:

IN THE LMIT OF VANISHING WAVELENGTH THE BISTATIC

CROSS SECTION FOR TRANSMITTER DIRECTION k AND RE-

CEIVER DIRECTION ﬁo IS EQUAL TO THE MONOSTATIC CROSS

SECTION FOR THE TRANSMITTER-RECEIVER DIRECTION ﬂ+ﬁo

A
WITH k 30 FOR BOLIES WHICH ARE SUFFICIENTLY SMOOTH

PROOF; From page 12 of Reference 15 we have the cross section as a

function of receiver and transmitter positions given by

G = 4x [!FX!’ + lFle + !Fz,’] (5.1.1)
whee
¥ =;“i—[(ﬁo-ﬁ)?-(ﬁ°.bﬁ} (5.1.2)
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with T = SS' fi exp [+ ke - (H‘o +?{)] ds (5.1.3)
1 = V-1
k = 2x/Xx, (A=the wavelength),

= unit vector directed from the receiver to the origin,

8 = unit vector defining the incident magnetic field direction,

8' = illuminated region of the body,

R = unit outward normal to the surface,
?' = radius vector from origin to a point on the surface of the

reflecting body, and

A
k = unit vector dirscted from the transmitter to the origin.

Let the origin of 2 rectangular coordinate system be located inside
the reflecting surface. Since the body is not specified in what follows there
will be no loss in generality if the transmitter in tke bistatic case be placed
on the z-axis of the coordinate system and the receiver be restricted to lie

in the y-z plane. Thus, the geometry we shali employ in the bistatic case

is defined by
A
90 = (sin26) 1, - (coa26) ?z )
k =, and (5.1.4)
A A A
a = cosf, i, + sinf, L s

and in the correspording monostatic case by
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A . A . A
n = (sin8) 1y - (cos @) iz ,
A .
k =(sin@) ’i‘y - (cos) §, and (5.1.5)

>

ca A
= cos §, ix-*-ssm?)t coso'?y-‘rsinjl)t sine'i\z .

This geometry is illustrated in Figure S5.1-1. Also, 6 is restricted to be less

than 90% t.e. 4 +k # 0.

(n°+k) k
L’

26

b——
i
|
|
|
'

—_——

FIG. 5.1-1: BISTATIC GEOMETRY USED IN PROOF OF RELATIONSHIP
BETWEEN BISTATIC AND MONOSTATIC
CROSS SECTIONS
First let us consider the vector f. We have, in the limit of vanishing
wavelength (Ref. 15, p. 16)
- @ +%

f=—0_
|2, + %]

jexp [ﬂk?'- (ﬁo+1§)] ds , (5.1.6)
sl

where the integral is evaluated by stationary phase. Thus, in the monostatic
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case we have ‘
- A
f=p j exp [ {<r! . (ZS)] ds (5.1.7)
i s’ ’
: where
A A A
: p = (8ing) 1y-(cose) 1,
i
E . and in the bistatic case we have
T-= -ﬁj’em[-ﬂd‘.(zf)‘cose)] ds . (5.1.8)
S|
. Thus, evaluating these integrals by stationary phase (page 14), Ref. 15 we
Wi obtain expressions of the form:
3]
; in the monostatic case
1 =[(Asin9) fy - (Acos@) l}z] exp (ikC), (5.1.9) i
k¢
' and in the bistatic case
]
s f‘:[(mane)’i‘ - (A) i‘z] exp (ik C cos 6). (5.1.10) t
y
1 Therefore, in the monostatic case under consideration we have
= ik ikC
F = -;-'- [(Ae )((‘x cos ¢t+fy sinf, cos 9+?z sinf, sin e)] (5.1.11)
from which it follows that
2 2 2 3
: F +iF + |F = 2 . 5.1.12
' LSRR LA L] (5.1.12
'
jf In the bistatic case under considerstion we have
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- g ikCcosf) [ . o . A
p-dk {Me‘ €08 } (sinfy sin26)(iy tand -1,) - (tan6 s1n26 + cos26)(3, cos, +1, sinfy)
(5.1.13)

Thus,
\F r + ‘F ‘2 +|F lz =\kA/ er [(tane 8in20 +cos26 Ycos?p. +sin’p cos°20 +sin’f, sin’26
X y Z t t t
2
=lkA/21r| : (5.1.14)
From the definitiorn of o it follows that for both cases under consideration
o = |kA}? /x (5.1.15)

and thus if the body is smooth the bistatic cross section corresponding to a
transmitter direction, f(, and a receiver direction, ﬁo, is equal to the mono-
static cross section corresponding to the transmitter-receiver directicn, ﬁo-i-ﬁ,
in the limit of vanishing wavelength.

Thus, if the wavelength is small in comparison with the dimensions of
the body, we can determine the bistatic cross section by applying the above
theorem together with the monostatic results of Section 4. *

For the thin wire an approximation procedure based upon the materiai
of References 9, 11, and 12 is as follows:

If R(6) is the angular factor predicted by Terman's graphs (Ref. 10),

*
Recent experimental work (Ref. 16) has indicated that this procedure will give

good results even for comparatively large wavelengths, wavelength to body
dimensions that one would find in considering the B-47 aircraft at 250 Mc.
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then we have in the monostatic case
- 4 .2
5(6,,6) = K[R(®)] * X (5.1.16)

where by o-(er, Gt) we mean that 6, denotes the direction to the receiver and f
the direction to the transmitter, and K is independent of aspect and the wave-
length depending only on the wire parameters. In the bistatic case we would
have

¢(6,,6) = K[R(Gr)]z [R(et)]2 2. (5.1.17)

Equations (5.1.16) and (5.1.17) imply that

o0, 0) = 1f7(6r.6,) x 7(6y, 6) (5.1.18)

i. e. that the bistatic cross section is8 equal to the square root of the product of the
two corresponding monostatic cross sectio;xs. A study of Weber's work (Ref. 12)
indicates that this approach is appropriate for the case of the half-watclength wire.
I is important to note that in the bistatic case the reciprocity theorem
permits the determination of complete patterns with a reduction in the computa-
tional effort. The theorem states that the effective cross section is unchanged

if the positions of the transmitter and receiver are interchanged.

5.2 Bistatic Cross Sections For An Angle of Separation of 180° - Forward Scattering

Here we shall concentrate on the case of in angle of separation of 180°,
the case in which fi, +& = 0 (see Figure 5.1-1). This case, 8s will be recalled,

is not covered by the theorem of Section 5.1.

AT AT W &
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This case is of considerable importance and warrants special attention
for two reasons. One is due to its nature which we will find is considerably
different than the type of bistatic scattering discussed in the preceding section.
The other is due to what might be termed a misuse of the term. This type of
scattering phenomena is only observed for an angle of separation, B, such
that B = 180°. (Experimentally, of course, the phenomena of forward scat-

tering will be observed over an interval around 8 = 1800, however this is a

small interval,)

z
%'ﬁ\ Transmitter

—— ———— ——

Receiver

B ———
Scattering Body

Y S / >y

FIG. 5.2-1: GEOMETRY FOR ANALYSIS OF BISTATIC CASE

For the geometry shown in Figure 5.2-1 we have from equation (3.2.6)

of Reference 15 that the cross section in the bistatic case is given by

o® :u|F.d* (5.2.1)
where

.a._*ﬂ( - >
F --é-;-[(ﬁooﬁ)f-(ﬁod) 3]
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3 = direction of receiver polarization ,

a = direction of incident magnetic field,

k = 2x/x,

So = direction from receiver to the origin,
f{ = direction from transmitter to the origin,

A . - A
f = S"ln exp [11{ r-(’ﬁo+k)]dS,

S' = illuminated portion of the body,

T' = radius vector from the origin to any point on the surface of the
scattering body, and
A = the unitoutward normal to the surface.

If in our discussion we do not specify the body geometry of the scatterer there
will be no loss in generality in our consideration of this optics case if we
restrict the receiver to lie in the yz-plane and the transmitter to be located
on the z-axis (as shown in Figure 5.2-1).

With the above we may rewrite equation (5.2.1) in the form
- - 2
o @< |6 DED-B.DE-D]| (5.2.2)
A
Restricting our attention to the case of 8 = 180°, we bave

ﬁo '/i\z R k= -’i\z , (cos ¢t)?x + (sin ¢t)'i\y =2 ,

and @ = cos ﬁr'i\x + sin pr’l\y .

95




Mg v

WA (el

from which we obtain upon substitation into equation (5,2.2)

2

(5.2.3)

o (x) = i:_ (cos B, cos . + sinf, sinf ) [ J‘

1
N n, dSJ

S|

The irtegral in equation (5.2.3) is merely the projected area in the xy-plane

and if we represent this area by A we obtain

2
o (a) = 47 A cos (f,-9)

(5.2.4)

XZ

If the polarizations are chosen so as to obtain the maximum return then this
expression reduces to

4xA?

Xz

o (x) - (5.2.5)

The case of forward scattering by a sharp edge can be handled in
terms of the material of Reference 17; the ratio of ‘ ﬁsl tol 'ﬁll is displayed
graphically in Figure 5.2-2.

The subject of forward scattering is discussed in more detail in Appendix

5.3 Bistatic Crose Sections - Illustrative Examples

Several examples of bistatic cross sections for simple shapes can be
found in References 18 and 15; here, to serve as an illustration of the applica-
tion of the material of Section 5.1 and also to give the reader a feeling for the
relative magnitudes of moncstatic and bistatic cross sections, we shall consider

the following simple situation.

e

e



e Observation

i i Point
| i Geometry:
;k ¢ 1.2
| R
i Lo f—ru -
§ i Direction of
t Incidence
) 0.8
?
0.6 A j
§y !
2 : 0.4
S
' 3
1T i 0.2 /
¢ —
0
-8 -6 -4 -2 0 2 4 6

V2kr sin{ €/2)

(1) Field is independent of 6 for 6 > § o
(2) |H/Hy, ] - (:)“/z.!y( - J2kx sin (/2 where F () = § e (1% ) @0
X

(3) This neglects an edge wave which is effectively uniform over the values
of € considered and decreases with increasing distance from the edge.

(4) Except for the approximation (3), the result is exact for the half-
plane and within 1% for wedges of angle f < 15°.

FIG. 5.2-2: ‘B/ H, J AS A FUNCTION OF ANGLE FROM SHADOQY/
EDGE FOR A WEDGE
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Let a transmitter {and receiver) be located at the origin of a rectan-
gular coordinate system and let a receiver be located at the point (0, 2d, G
Let a body in the shape of a 10;1 prolate spheroid mave "between' these
two points at an altitude equal to z, following a flight path defined by the
vector ¥ = (cosf) 'i‘x + (sin ) ’i‘y».~ This flight path will cross the yz-plane

at the point (5, v, zo) with 0 y { 2d. This geometry is shown in Figure

5.3-1.
z
l
ST Spheroid {x, ¥', z,)
I'd f ,I
A ’
z
) | NG
’ o
LT o T S O, y.20) _______
VAR | 7 i
/ i 7, { 1
’ | §
’/ ! /, § {
S | !
Transmitter s L’ e > Recege§
0 (0, y', 0) 0, y, 0) (0. 2d, 0)
X

FIG. 5.3-1: GEOMETRY FOR BISTATIC ILLUSTRATICNS

In these zxsmples we will assume that the vector 9 lies along the
major axis of the apheroid. We shall consider the cross sections as a
function of the altitude z,, the cross-over-point y, and the fight direction
§. In each cese the monostatic cross secticn (receiver at origin) and the

bistatic cross seciion corresponding to the transmitter at the crigin and
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the receiver at the point (0, 2d, 0) is determined. Specifically, we shall
consider the {ollowing three cases:

(1) 2,/d =0.04 and p =0; y =0, d, and 24 -0.4 ¢ x/d g 0.4,

(2) x/d = -0.2 and p =0; z,/d =.12 0( y  2d.

(3) x =0, z,/d =0.2,

In each case we make use of the theorem of Section 5.1 to determine
the cross sections for the bistatic case from the material of Section 4 which
of course also yields the monostatic data. The results obtained are shown
in Figures 5,3-2 through 5.3-4 for the above three cases resne~tively.

We see from: Figure 5.2-2 that for flight paths which are normal to
the nase line the bistatic return is appreciably larger than the monostatic
if the object passes over the transmitter, there is little or no difference in
the two returns if the flight path is over the bistatic receiver, and that if
the flight path is over the midpoint of the base line then the monostatic
return tends to be the larger.

From Figure 5.3-3 we note that for detection at a given distance
from the base line the bistatic return is larger if the path is over the
transmiiter, the monostatic is considerably larger for flight paths over the
midpoiut of the base line, and that for other paralle! flight paths the mono-

static return tends to be slightly larger.

o eyt

Figure $.3-4 gives infcrmation about the relative megnitudes of the

bistatic and monostatic returns at the moment the object passes over the
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base line; we see from the figure that if the object passes over the base line
with § = 0 or at y/d = 0.5 then the two cross sections are equal. U y/d is

less than 1/2 then the monostatic return is either the same or greater than

the bistatic. For y/d > 0.5 and § # O the bistatic return is larger, and if

v/ d i8 close to one then the bistatic return can be considerably larger.

The situation becomes more complex if the body in question is not of
this simple form; for example, if the prolate spheroid discussed above should
have wing, rudder, and stabilizer surfaces attached, then the comparisons
would be somewhat different. For most of the aspects one would consider
(assuming a similar flight path) the contributions from the fuselage (the
spheroid) would dominate, but there would be aspects at which peaks in the
return would result due to contributions from the edges of the wing surfaces.

In comparing the radar cross section in the bistatic case with a
corresponding monostatic case it ia important to note that shadowing effects
can play a dominant role. The theorem of Section 5.1 might lead one to
think that the relationship given there for simple shapes would also hold
for cross section studies on such shapes as aircraft. If the wavelength is
sufficiently smail and if none of the contributions are shadowed out, then
the theorem of Section 5.1 would be applicable to the complex body problem.
However, it will often happen that components which sre dominant for the
monoststic case will be completely shadowed in the biststic case and

conversely. This situation is illustrated in Figures 5.3-5 and 5.3-6.
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(1) (2) (3)
|

| - S S
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g
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{ 3 // | // v/
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¢ of 1—;—’— 0 d 2d Y
¢
| X
‘ . Bistatic -(1) and (3)
i Monostatic -(2) and (3)
H
; .
t
H 2
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1
i
| / N\
J N\
Bistatic - (2)
-
1 "] Monostatic - (1)
10
100 ﬁ ]

-0.20 -0.16 -0.12 -.08 -.04 0 .04 .08 .12 .16 0.20
x/ 2d

FIG. 5.3-2: COMPARISON BETWEEN BISTATIC AND MOKOSTATIC CROSS
SECTIONS OF A TEN TO ONE (¢/b =10) PROLATE SPHEROID FOR THREE
FLIGHT PATHS NORMAL TO LINE JOINING TRANSMITTER AND RECEIVER

(Altitude = df 25)
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2
10

10

100

0

!

y/d

Monostatic

Bistatic

&

FIG. 5.3-3: COMPARISON BETWEEN BISTATIC AND MONOSTATIC CROSS SECTION

OF A TEN TO ONE (¢/b =10) PROLATE SPHEROID FOR LOCATIONS RESTRICTED

TO AN ALTITUDE EQUAL TO 0.06 TIMES THE DISTANCE BETWEEN TRANSMITTER
AND RECEIVER AND AT A FIXED DISTANCE FROM THE "CROSS OVER" LINE
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FIG. 5.3-4: COMPARISON OF BISTATIC AND MONOSTATIC CROSS SECTIONS OF A
TEN TO CNE (¢ /b = 10) PROLATE SPHEROID FOR LOCATIONS ABOVE THE LINE
JOINING THE TRANSMITTER AND RECEIVER AT AN ALTITUDE OF 0.1 d WHERE

THE DISTANCE BETWEEN TRANSMITTER AND RECEIVER EQUALS 2d AS A FUNC-

TION OF THE "CROSS OVER POINT' AND THE ASPECT
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In Figure 5.3-5 we show the case in whicl shadowing leads to a larger

bistatic return than the monostatic return. We see from the Figure that in the
bistatic case reflections are received from Loth the fuselage and the wing tank
while in the monostatic case the fuselage is in the shadow of the wing tank.
Figure 5.3-6 displays the type of situation which will Jead to a much
larger monostatic cross section than the bistatic cross section. We see from
the figure that for the nose-on case (monostatic) reflections will be received
from the fuselage, all the engines, and all of the wing tanlrs. In the bistatic
case illustrated; however, only the return from the fuselege is received. The
energy which is incident upon the wing enginez and tanks on the left is re-

flected away from the histatic receiver by the fuselage and the fuselage

shields the wing surfacea on the right so that none of the incident energy
reaches these surfaces. Thus we see that, in this case, if the bistatic angle
is much larger than 40° (it is about 90° in Figure 5. 3-8) we would expect
; e shadowing to greatly reduce the bistatic return.

These two Figures (5.3-5 and 5. 3-6) indicate why one must be careful
in applying the theorem of Secifon 5.1 to a problem involving the determina-

tion of the bistatic cross section of a complex shape.
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Monostatic Radar

FIG. 5.3.5: SHADOWING EFFECT ON BISTATIC V& MONOSTATIC
CROSS BECTIONS - ILLUSTRATION I
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THE COMBINATION OF THE COMPONENT CROSS SECTIONS

Having completed the first two steps of the theoretical method, one
is then presented with the problem of properly combining these component
cross sections to obtain the estimate of the cross section of the complex

‘ body itself. As a result of the first two steps we have, for any given com-
bination of aspect angle, wavelength, and polarization, N components for

which cross sections have been computed, i.e., we have the set of values

61. 02' 03' s o o o+ o s oNo

In considering the proper manner in which these component cross sections
should be combined we first must consider the question of shadowing effects.
When one body is in the shadow of another, the effect that the shadow
has on the scattering properties depends upon the parts of the body which
are in shadow. In general, the cross section of a body is mainly determined
by the returns from those parts of the body giving specular reflections and/or
from the discontinuities on the body surface. Thus, if these portions of the
body are in shadow, then that component will not contribute significantly to
tke cross section of the complex of simple shapes making up the aircraft or
missile under study. Conversely, if thcge critical portions of the body are

not in shadow, then that component will contribute to the cross section of

the aircraft {or missile) just as if there were no shadowing at all.
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Having taken shadowing effects into account, we then have N scatterers
to consider and thus N values of cross section to consider. There are two
methods of combination which we shall consider; both of them have their
limitations and both have been found to yield results which are in good agree-
ment with experimental results. One of these methods of combination involves
the consideration of the fact that these N scatterers are located at different
distances from the radar and involves the attempt to determine the relative
phase angles between the returns from these N scatterers. This approach
leads to the following expression for the cross section of the entire body; we
denote this expression for the cross section by op (cross section by relative

phase):

e} =
P

N
3 il |2

(0,) * exp (1p ). (6.1)
j=1 J 7y

where o j = the cross section of the jt'-ll ccmponent and # j = the relative phase
angle associated with the jt—h- component. The magnitudes of the p  are de-
termined by the expression shown in Figure 6-1. Thus, in this approach it
is necessary to determine estimates of many additional distances from the
aircraft drawings. A& can readily be seen from the expression for the p e
their values asre directly dependent upon the ratios dj/ A, and it is obvious
that for a large aircraft at small wavelengths it might be impossible to

measure the dj from the aircraft drawings with sufficient precision. In addt.-

tion to this difficulty in measuring the d’ (and thus the ﬁj), it is to be noted
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Surface
F‘ ] No. 1

| .

Surface
No. 2

/

Reference
Plane

ﬂj =2x (2dj)/)¢

Direction
of Incidence

FIG. 6-1: DETERMINATION OF THE RELATIVE PHASE ANGLES

that an aircraft vibrates to some extent while in flight and this vibration

could suffice, in many cases, to effectively change the valucs of the ﬂj.
¢ Also, as pointed out in Section I in connection with the question of trying

to obtain extreme precision in theoretical values for the radar cross sec-

tions of aircraft or missiles, minor variations hetween two aircraft of
the same model designation might suffice to effectively change some of
the P i All of these facts tend to discourage the use of this method of

combir.ation.

As an alternative to this method of combination we have what we

refer to as the random phase method of combination which yields the
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"average'" radar cross section. This metbod is based upon the assumption
that the many different pj are randomly distributed between 0 and 2z (after
each pj has been placed in its equivalently smallest form using the fact

that exp(:pj) = exp (iﬁj - 2ix) ); then upon averaging over the pj we obtain

as our expression for the "average' cross section

! = i’r‘ o). (6.2) ‘
j:

Associated with this method of approach we can estimate the amount of
possible deviation from the average cross section, o', by employing the
RMS spread. This measure of the possible variation in cross section due

to relative phase effects leads to the following bounds on the cross section

where

=1 171

The random phase method which uses the average cross section
section and the RMS spread is designed to give estimates of the amount by
which the cross section might deviate from the average value due to phase
effects. On the other hand, the relative phase method of combination is

Jesigned as & means of estimating not only the amount by which the cross
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section deviates from the average value but also the locaticn (in aspect or
wavelength) of the relative peaks and nulls.

Which of these two methods of combination to be chosen for a
particular problem would depend upon the purpose of the calculation. If
one were interested in finding an order-of-magnitude estimate of the cross

section as a function of aspect for some fixed wavelength or as a function

" of wavelength at some fixed aspect, then the random phase method should

be adequate. If, on the other hand, one should happen to be interested in
determining the manner in which the cross section might vary (due to phase
changes) with aspect at a given wavelength or with wavelength at a fixed
aspect, then the relative phase method can provide information of considerable
interest. It is true that the precise determination of the f j is often impos-
sible andin such a case one could not place much confidence in the results
obtained. However, even in this case one can obtain sor e idea of how the

ﬁj will change with aspect (at a fixed wavelength) or wavelength (at a fixed
aspect) and thus, if one is only interested in determining the type of oscil-
lation in cross section to be expected, the relative phase method can yield
useful data even though precision is lacking in the determination of the p y

Of course, if the ratios, dj/ A, can be determined with sufficient sccuracy

80 that the p y were known to, say, two decimal places, then the relative
phase method will yield fairly good estimates as to the location of the relative

peaks and nulls,
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The random phase method of combination has been applied in the past
to the determination of the radar cross sections of many different aircraft
and missiles and the results have been found to be in good agreement with
experimental data (the two sets of results, theory and experiment, agreeing
in almost all cases to within 2 to 10 ab with differences greater than 6 db
occurring, for the most part, only in the vicinity of an experimenially de-~
termined peak or null - a situation which can usually be traced to an extreme
type of phase effect).

The basic premise that the cross seciion of an aircraft ior missile)
can be estimated by (1) treaking up the aircraft into its components, (2)
determining the radar cross sections of the components, and (3) adding the
component cross sections tc obtain the cross asection «f the entire body, has
beeu checked out experimentally. The Alir Force Cambridge Research Center
applied this process on a missile shape (about three wavelengths long and
1.25 wavelengths thick). The cross section of the entire missile was first
determined experimentally, then the cross sections of the compcnents were
determined {again by experiment); it was found that the sum of the component
cross sections (upon taking shadowing effects into account) was approximately
the same as the cross section of the entire body.

To obtain some idea of how the relative magnitudes »f the o j effect
the estimates of oscillation due to phase changes either through the use of

the random phase method or the relative phage method let us give a little
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E%‘ attention to the cases N =2, 3, 4. In doing this let us assume that the oy
Eg have been ordeved according to magnitude as follows;
Y .
3
E %a o )
£ 172
y ¥
E§ °1<°2\<03’ or
E§ { 01<02\<03g04

i

134

1 ) .

‘% * with the cross sections normalized so that o, = 1m".

¢
53 For the case »f N = 2 we have considered the cases of o, * 1, 1.5,
'ea g, N
Ej ; 2, 4, and 9 m®. The average cross sections, the RMS spread, the relative
* phase maximums, and the relative phase minimums have been computed; the

&
i}
-

results obtained are shown in Table 6.1, We see from the table that the

-
" ]
e et

magnitude of the possible variation from the average is adequately predicted

[P,

by the RMS spread in all cases if 02/ o 2 4 and is not adequate in other

'
Pyt

4
A

cases only if the pj are such that cos (p2 - P, 15 negative and close to -1. -
For the N = 3 cose we have examined a variety of different values

of the oj and in addition to the quantities determined for the N =2 case we

have zlso determined the relative phase minimum for the special case of

e e o 0w e AL W S e o e TN e

coB (p2 - 93) = 0. These results are shown in Table 6.2, An examination
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of this data indicates that the maximum ig adequately predicted through the
use of the RMS spread and that the minimum values are also adequately

predicted by the RMS spread if the phase angles ﬂz and pa are such that

cos (f, - P 3) is non-negative.
S ; The N = 4 cagr was considered in a aimilar manner and the results

obtained are shown in Table 6.3; in this case only the relative phase minimumsa
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were calculated in the relative phase consideration of the problem since it has
already been observed in the N =3 case that the greatest di{fcrences in the

two sets of estimates occur in the vicinity of relative nulls.

oy 0, The RMS Spread o' The Relative-Phase Spread
1 1 0.59 - 3.4 0 - 4.0
i 1.5 0.77 - 4.2 2.5 0.05 -~ 4.9
: 1 2 1.0 - 5.0 3 0.17 - 5.8
1 4 2.2 - 1.8 5 1.0 - 9.0
i 9 5.8 -14,2 10 4.0 -16.0

TABLE 6.1: RELATIVE PHASE AND RANDOM PHASE FOR N =2 (o in m")

e wabis 2l

(c in m?)

114

91192 1°3 The RMS Spread ¢' | The Relative-Phase | Relative Phase
Spread Min. cos(fy-p4)=0
11141 0.55 - 5.45 3 0 - 9.0 0.18
1111 9 4,84 - 17,2 11 1 - 25 4.1
111149 36.9 - 85.1 51 25 - 81 37
112] 2 1.0 - 9.0 5 0 - 15 1.0
112 9 4,38 - 19.6 12 .36 - 29 5.4
11249 34.7 - 69.3 52 21 - 89 38
11 4] 4 2.07 - 15.9 9 0 - 25 3.3
114 9 4.10 - 23.9 14 0 - 36 6.9
11 449 31.5 - 176.5 54 16 - 100 40
TABLE 6.2: RELATIVE PHASE AND RANDOM PHASE FORN =3
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Relative Other
0110991030, o' | RMS Spread Phase Relative Phase Minima
Minimum | cos(fg-f,)=fcos(p3-p ) =1
1 14 (81100 186 | 52 - 320 0 130 256
1 |4 |64}100 169 | 49 - 289 0 113 225
1 |4 ]49|1001) 154 | 48 - 260 0 98 196
1 14 (36]100] 141 48 - 234 1 85 169
1 |4 |25]100} 130 51 - 208 4 74 144
1 {4 |16]100 121 55 - 187 9 65 121
1 14 9160} 114 60 - 168 16 58 100

TABLE 6.2: RELATIVE PHASE AND RANDOM PHASE FOR N =4

The relative phase minima appearing in Table 6.3 were determined by

employing equation {6.1) to obtain

] ] a2
7p | 10+, M, Moot [P

Thus, if ﬂa - ﬂ4 = 2nx, we have

2
°P>|7+fa—3|

if p3 - 94 = (2n+1) x/2, we have

; a&nd

2
opzl7+1f;3! .

The material presented in these three tables clearly indicates how

highly dependent the relative phase estimate of the cross section is on the
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phase angle between the two largest contributors. If one is sure that the
relative phase angle between the two largest contributors is such that its
cosine i8 non-negative, then the random phase method of combination
(average cross section plus the RMS spread) will suffice as a means of
estimating the range of the possible variation in the cross scction.

It is of some interest to consider the case in which the two largest
contributions are of equal magnitude. Let us assume that of the set of N
values of cross section the two largest are % and o, and that ¢ 1 %%

2
We may place equation (6.1) in the form

N N-1 N
oy Z o +2 Z Z fon o, cos(py -p) (6.4
=1 n=1 k=n+1

Under the conditions we have imposed, equation (6.4) may be placed in the

form

=

0,20 + 20, cos By -p,) +2 Vo \/G—k (cos(pl-pk)*-cos(pz“pk))

3 k=3

1 .
. N-1 N

3 ,'
= + i o+ Z : 2 ;/anok cos(pn-pk). (6.5)
k=n+1

».. n=3 n=3

et il

We readily see that if pl - pz =(2n+1)x, then the entire first row of

BN -" the right side of equation (6.5) will reduce tn zero and the magnitude of

o5 is determined by the role played by the remaining o (n=3,4, ..., N\

A o,
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ILLUSTRATIVE EXAMPLES

7.1 Radar Cross Section of a Missile

In this sectior. we shall illustrate the theoretical method for the cal-
culation of the radar cross section of a missile or an aircraft by determining
the radar cross section of the fictitious missile shown in Figure 7.1~1. We
will note from Figure 7.1-1 that this missile consists of a paraboloid faired
into an ogive which in turn is faired into a cylinder; four fins are mounted in
the back. The fins are taken to be rectangular in shape in the form of flat
plates with sharp edges {for simplicity we shall assume that these edges are
in the form of wires having a radius of A/85). The calculation shall be per-
formed at a wavelength of 1 ft (this choice of wavelength will permit us to
illustrate both methods of treating wires discussed in Section 4.4). We shall
consider two pelarizations: vertical polarization - the case in which the
E-vector is in the plane determined by the direction of incidence and the
z-axis, and horizontal polarization - the case in which the E-vector is normal
to this plane. The cross section will be determined for two different values
of p (f =0 ond p =45°) as & function of 6.

We observe from Figure 7,.1-1 that there are the following components
to be considered:

(1) the paraboloid section of the fuselage, o, {This component will

0 )
contribute for 0 €6 < ~ 76.),
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(2) the ogive section of the fuselage, Co {This component will
contribute for ~v 76° < 9 <90%),

(3) the cylinder section of the fuselage, Og (This component will
contribute for 20° < 8 <180 when = 0 and for 0°<6 <180°
when § is between 0° and 90% we shall assume that the rear
of the fuselage consists of one sharp rim in the form of a loop
of radius 3 ft. withthe "wire" having a radius = X\ /85.),

(4) the fin in the + x, z-plane, ¢ & there are four parts of this

component to be considered:

c 41 = the contribution from the leading edge,

o 4,2 = the contribution from the side' edge,

c 4,3 = the contribution from the trailing edge, and
c 44 = the contribution from the flat surface,

(5) the fin in the + y, z-plane, o, (We have the same four parts to
consider as in 04.),

(6) the fin in the -x, z-plane, O (We have the same four parts to
consider as in 04.). and

(7) the fin in the -y, z-plane, 07.(We have the same four parts to
consider as in 04.)

To determine the magnitude of o, we make use of equation (4.10.1)

and we see that this contribution is independent of both wavelength and polariza-

tion. Thus we have
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2 0
o, =(x/ g)secs ft for 0 <6 < 76°, (7.1.1)

For 02 we make use of equation (4.6.5) and again we see that the

contribution is independent of both wavelength and polarization. We have
02 = 33x (33 - 30 esch) ft2 for ~ 76o <6 <90° (7.1.2)

To determine the magnitude of 03 we must consider three cases;
6 =90°, 625 180°, and 6 # 90° (but less than 180°). For g - 90° we

employ equation (4.4.3) and thus we have (since a =3 ft. and A =1#t.)
2 0 .
Og = 6xL” for 6 =90°. (7.1.3)

When p = 0° L = 20. and when 0°< p<90°, L = 24 1.
For 6 # 90° (but near the broadside aspect) we make use of equa-
tion (4.4.4); we note that since the front of the cylinder is faired into the

ogive, we have only one such contribution. Thus for this range of & we have

(since A= 1ft. anda =3ft.)

3 sin6 2

ft" . (7.1.4)

8xcos26
We observe from Figure 4.4-8 that the size of the cylinder (in terms of )
is such that these contributions are essentially independent of polarization.
The return from the rear of the cylinder (the sharp wire loop rim) is not
independent of polarization as can be seen from the material of Section 4. 5.

The magnitude of this contribution is determined using equations (4.5.14)

and (4.5.15),
120
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A graphical presentation of the contributions from these first three
components is given in Figure 7.1-2. The data shown in this figure will
serve as a guide in our considerations of the fin contributions.

For convenience in the following consideration of the fin contributions
we shail use the notation o, (6, p). Let us first consider the flat plate
contributions which will appear only for § = 0° and 6 - 90°. We have from
equation (4.7.1) that

0o 0 0o o 2 2 2 2

05‘4(90 ,0) =07,4(90 , 0) =64r (1) (4)°/ (1) #t

2
=3.22x103ft. (7.1.5)

In the consideration of the wire contributions we note that for the shorter
wavelengths we could use either the material of Section 4.7.1 or the thin wire
material of Secticn 4.4 since both are based on the Chu formula, However
since we are dealing here with wires which are either one wavelength or four
wavelengths long we must use the wire theory of Section 4.4. Before we

examine the individual magnitudes of o Og, O and o let us consider

4
the two wires involved.

Employing the Chu formula with the radius of the wire equal to 1/85
of a wavelength and assuming that the E-vector is in the plane determined by
the direction of inc.dence and the wire we obtain an estimate. of the maximum

return from the side edges of the fing, that is from the 4 ft. edges. This

result is shown in Figure 7.1-3 as a function of the "wire aspect angle" a.
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{As is shown in Figure 7.1-3 the angle « is the angle between the direc-
tion of incidence and the wire.)

The leading and trailing edges are 1 ft. long (that is they are con-
sidered as one wavelength wires). Thus we can employ the estimate of
the return given in Figure 4.4-7 together with equation 4.4.9 to obtain the

estimate from these ! fi. edges. This estimate (for the case in which the

E-vector is in the plane deiermined by the direction of incidence and the

wire) is also shown in Figure 7.1-3.

The curves shown in Figure 7.1-3 suffice to determine the edge con-
tributions for the aspects confined to the § = c°® plane. In the horizontal
polarization case we can obtain ¢ 4,2 05‘ e and 07’2 directly from the
4 ft. wire curve of Figure 7.1-3 noting that for these edges a = 6; the

¢ ! magnitude of o 41 We obtain {rom the 1 ft. wire curve noting that o = 90° -0

. , - :
(06,1 = 04 1 contributes only at 8 = 0 ); the magnitude of 04’3 and 06,3

1 »
i

J we can read from the 1 ft. curve noting that a = 90° + . In the vertical

0
polarization case for § = 0 the only edge contributions come from tbe

leading and trailing edges of the fins in the yz-plane, i.e. o 5 1’ o 5 3

o, ., and On g these four contributions are constant for all 8 in the

7,4
interval 0° <6 S180o and are given by the a = 90° case for the 1 ft. “ire

PN ]

in Figure 7.1-3. (We note that o 5 3 and must be taken as zero at

97,3
6 = 0°.. due to shadowing, and for similar reascus ¢ 5 1 and L) must be

td

L
- - bt am n
n .

taken as erc at 8 = 1800.)

Ll 4

¥
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The p = 45° case requires a little more analysis due to more com- i

plicated relations between the 8 and a aspect angles and the variation in
the polarization angle. In the horizontal polarization case we can determine

the magnitudes of o d as was done above. The treatment of the

95,2
leading and trailing edges ie done as follows. First we determine the aspect

4,2 ™

© gt e e

angle o as a function of 6. A brief examination of the geometry indicates that

giné .
vz

Figure 7.1-4. The polarization factor, we note from Section 4.4, is the fourth

the relation required is cos a = This relation is shown graphically in
power of the cosine of the angle between the E-vector and the p.ane determined
by the wire and the direction of incidence. To determine the magnitude of

this polarization factor we first find the unit normal to the plane of the wire
and the direction of incidence and then by taking the dot product of this vector
with the E-vector (unit vector) we obtain the cosine of the complement of the
angle we are seeking. The final polarization facter so obtained is presented
graphically in Figure 7.1-5. These two relations (Figures 7.1-4 and 7.1-5)
together with the data presented in Figure 7.1-3 makes it possible for us to
quickly determine the magnitude of the contributions of the leading and trail-

d for

4,1 an 05,1 ¢
for ° <9 < 1800, and we must take into

o
ing edges for this § =45 case. We have to consider o

0 0
0 €6 <180, 0‘4!’3:mdcr5‘3

account Og 3 and ¢ for all 6 between 900 and 180°. The magnitude of

7,3
these contributions as a function of the aspect angle 6 and the polarizatiin

is shown in Figure 7.1-6.
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FIG. 7.1-4: 6 VS @ FOR THE TREATMENT OF THE LEADING
AND TRAILING EDGES FOR THE § = 45° CASE
With the above information we are now in a position to assemble these
component cross sections to obtain the estimate of the cross section of the
entire missile. The summaries of the component cross sections are given
in Tables 7.1.1 through 7.1.4. In this illustration we shall not go heyond

this point; the "aversge" or "random phase'" cross sections are given in the

tables. An illustration of the relative phase approach and the RMS spread

will be given in Section 7.1.2 where an illustrative example for a manned

aircraft 18 discussed.
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b 7.2 Radar Cross Section of an Aircraft

In the illustration given in Section 7.1 we started with a drawing of

the configuration and went through the entire operation up to the point of

. e ot W——T—— o
"
oy

E combining the component cross sections. Here, in the aircraft illustration

we shall start with the component cross sections and discuss the combination

v S—
’ il

of these component cross sections.
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The only essential difference between the problem of determining the
radar cross section ¢f a manned aircraft and the corresponding problem for
a missile is the number of components to be considered.

Figure 7.2-1 displays the resulis obtained for a typical large jet
aircraft. One will noie that there are many significant contributors to be
considered and that over a wide range of aspects we do not have a single
large contributor. In discussing the combination of these component cross
sections we can use a fixed vravelength and let the aspect vary or we can
consider a fixed aspect and let the wavelength vary. Lzt us use the latter
approach and concentrate on the nnse -on aspect, that aspect at which all of
the contributors are of approximately the same maguitude. Let us assume
that there are four engines a distance d; back from the nose and two other
engines a distance d

2

7.2-1 we would have four essential contributions to consider:

back from the nose; thus from the data shown in Figure

(1) the contribution from the fuselage, o,

(¢) the contribution from the group of four engines, 94,

{3) the contribution from the group of two engines, 04, and

(4) the contribution from the group of two wing tanks, ¢ 4"
The type of variation one can obtain between the relative phase and the

random phase methods will be adequately illustrated if we consider & wavelength

variation from about A =0.69 m to A =.72 m. Over a wavelength range of this

magnitude the cross sections of the individual components will not change

133

Wmua~ X




TN S S gz ~_n;§

St o g L -

s A o

fuselage ) .

jeading edge | : - ; :

9 'of wing  —e ! i ‘ .

10 f‘“"" -

|

trailing edge i

of wing ;

! ﬂ |

| | o

1 ' N v

10 ~ 4 . ;

‘trailing edge, | 3

leading edge { 'of stabilizer
of .. )
-y

stabilizer

3
f

¢ (in squarc meters)

Azimuth Angle (in degrees off the nose-on aspectj

FIG. 7.2-}: RADAR CROSS SECTION PATTERN OF THE COMPONENTS OF A
TYPICAL LARGE MANNET JET AIRCRAFT AT A WAVELENGTH OF 0.71 METERS
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an appreciable amount; thus, let us assume that they are constant over

this range of A and have the following values:

- - 2. = 2- - 2
01-0.32m, 02—6.9m, 03—1.;7m, 04—1.0m.

Let us further assume that upon a study of the aircraft drawings (applying the

method shown in Figure 6-1) the following values of the phase angles have been de-

termined |ﬂ1 - ﬂz = 66.8%/X; p2 - By =30.27/x ’
|8, - 85| = ss.6m/x; [p, -B,| <1484/
lpl -p,| = 52.00/x; |fy -8, = 15.47/2. "

Applyirg equation (2.4) we can thus obtain the cross section as a function of
wavelength taking these relative ph'ﬁse relations into account. The result so
obtained (shown as F vs. ) is presented in Figure 7.2-2. The average
cross section and the RMS spread is also shown in Figure 7.2-2 for comparieon
purposes. We see from Figure 7 2-2 that even for this case, in which we have
a large number of contributors having approximately the same cross section,

the variation due to changes in the relative phase very seldom exceeds the
variation predicted by the RMS spread. Over the range shown in Figure 7.2-2
the cross section dips below the RMS minimum for only about 197 of the

wavelengths considered. As an illuastration of the manner in which the two

*
Of course the wavelength is measured in the same units a3 the d;, in this
case the unit is meters. .
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methods of combination (relative phase and random phase) compare for a
fixed wavelength and varying aspect we present in Figure 7.2-3 the results
obtained for & missile; the results are displayed on a relative scale as a
function of aspect and it is obvious that the RMS spread calculation suffices
for almost ail of the aspects considered.

It is important to note that since a missile has fewer components than
a manned aircvaft it is to be expected that the relative phase results would
lie outside the RMS spread more frequently in a missile calculation than they
would in an aireraft calculation.

10% |

RMS spread
Calculaiion

10

A

o | / |
- Relative Phase
— Calculation

Cross Section (on a relative scale)

10

0 10 20 30 40 50 60
Aspect Angle (azimuth in degrees)

FIG. 7.2-3: RADAR CROSS SECTION OF A MISSILE - COMPARISON OF
RELATIVE PHASE AND RANDOM PHASE (RMS SPREAD) RESULTS
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CONCLUSIONS

We have attempted in this report to present a detailed outline of the
procedure for calculating the radar cross sections of aircraft and missiles
which has evolved at the Radiation Laboratory of The University of Michigan
during the past several years It is our hope that this report will serve as
a handbook for the calculation of such radar cross sections.

Examples of the application of this process to the determination of
the radar cross sections of various aircraft and missiles will be found in
many of The University of Michigan reports in the Studies in Radar Cross
Sections series and in the reports which supplement that series. Since each
of these documents is at present classified we have included the illustrative
examples in Section 7. It would be of considerable value to examine the
details of some of these earlier computations. The documents which contain
these examples are Studies in Radar Cross Sections XII, XIV, XV, XVII,
XVHII, XIX, XX, XXI, and XXIV. The documents in the supplementary
s;ries which would be of interest in this connection are the reports 2476-1-F,
2541-1-F, 2550-1-F, 2200(01)-1-T, 2500-1-T, and 2660-1-F. (See Appendix H.)

It should be noted again that this process is designed for use when the

, cross sections are desired to within 2 to 10 db and experience has indicated

that the method will yield results which differ from experimentally determined
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values by less than 6 db for almost all combinations of wavelength, polariza-
tion, and aspect. This is illustrated in Figures 8-1 and 8-2. The first
displays a comparison between theory and experiment for a missile shape
and the second displays a comparison for a manned aircraft, A 10 db spread
is shown in Figure 8-2 since (1) there is a 20 0/0 difference in the frequencies
employed in the theoretical and experimental work, (2) the theoretical analysis
on this aircraft was one of the first applications of the mesthod and thus did not
contain the refinements now available, and (3) the RMS spread was not computed
in this particular theoretical study. Figure 8-2 also contains an interesting
observation relative to the experimental approach. One will note that experi-
mentally one can obtain as much as an 8 or 9 db difference between the cross
section on on;a side of the aircraft and the cross section on the other. That
8, in terms of the coordinate system shown in Figure 8-3, one finds experimen-
tally that ¢{(8', #') and ¢(8', -f') may differ by as much as 8 or 9 db even
though the aircraft is symmetric with respect to the xz-plane. The theoretical
approack would, of course, imply that for an aircraft which was symmetric
with respect ic the xz-plane o(8'. ') =a(8', -p').

The material presented in this report applies for perfect conductorg.
If the surface was not a perfect conductor but one having a dielectric constant
equal to € , then we could employ the following relations:

In the geometric optics region:

2
7 dtel. f Je -1
';""""‘""" = , © F €] (8.1)
p. cond. Je +1
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, In the Rayleigh Region (sphere result):

2

adiel. €-1

4
= = 8.2)
5 (

o] €+ 1
p. cond.

A plot of equation (8.1) is given in Figure 8-4 from which we see that in order

for the cross section of a dielectric surface to be a factor of ten less than that
’for a surface which is geometrically the same but a perfect conducting surface,

the dielectric constant must be greater than about 0.5 but less than about 2.

In the case of equation (8.2) it is of interest to note that for large values of

€ the ratio approaches 4/9 and as € — 0 the ratio o approaches

diel. / op.cond.
the value 1/9. Since in the application of this theoretical method most of the
body components considered are in the optics region, the information presented

in Figure 8-3 will suffice for most cases.

8 a0 o s el
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APPENDIX A

COMPLETE SCATTERING MATRICES AND CIRCULAR
POLARIZATION CROSS SECTIONS

= SCATTERING MATRICES

i3 general, in radar scattering problems we deal with transverse

"f ‘ fields, i.e. vector fields whose components in the direction of propagation
vanish, in that first the incident radiation and finally the scattered radiation

at large distance from the scattering center are described in terms of such
fields, There is a certain freedom in the description of these transverse fields

which we will investigate in more detail.

The scattering of electromagnetic radiation may be described quite
generally as follows: For simplicity, assume an incident plane wave and choose
a coordinate system such that the negative z-axis is in the direction of propaga-
tion of the incident wave (Fig. A-1). Since the incident electric and magnetic

vectors lie in a plane perpendicular to the direction of propagation, the incident

raciation is completely specified in free space by the direction of propagation

anc the x- and y-components of either the electric or magnetic field, After

diffraction by an obstacle the scattered radiation in the ''far zone'' is then com-
pletely determined by the configuration of tha sraiterer, its electrical properties,

A
and by the incident radiation. If k is a uni! vector in the direction of the incident

Wl Godaiuidie
P e ——————

; A
‘ wave and kois a urit vector in the direction of the observation point,

¥
:

!
v
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tt.e far field in the direction k  is determined by the type of obstacle
and the incident radiation, or, in symbols,

-~ A A i
Ea = S(k,k)En (1.1)
Ko k

i A
where Eﬁ is the incident field moving in the direction k , EZ\ is the scattered
o
A A A
field moving 1n the direction k ,and Stk k ) is a matrix with continuous indices
A A
koand k which depends on the obstacle and the wavelength of the radiation.

From its analog in quantum mechanics, the matrix S is called the scattering

matrix or, more briefly, S-matrix.

1.1 Scattered Field in S-Matrix Notation

-

if the coordinate system is rotated so that the new z-axis lies along the
direction ﬁ o the incident field will be specified by three components, but the
scattered field in the direction l’c\évill be specified simply by the x- and y-
components since the radiation field is transverse. Symbolically, this rotation

R is expressed as

A8 e A i
RE, = =Rk kK)R!I{RE . 1.1.1)
ko (5) o ( ﬁ) (

An immediate condition on the new S-matrix RSR"1 is then that it leads to zero
z-component of the scattered field.

The maximum advantage of using the S-matrix notation is obtained
when circularly or elliptically polarized incident radiation is considered.
Before going into this, however, it is desirable to give a brief review of the

polarization phenomenon.
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Consider a plane wave moving along the z-axis as in Figure A-2. If
the electric vector is restricted to lie in one planc through the z-axis, say the
yz-plane, the wave is said to be planz or linearly polarized since the projection
of the locus of the electric vector on the xy-plane is a straight line.

If the electric vector is no longer required to lie in a single plane, then
its projection on the xy-plane will no longer be a straight line but will in general

! describe an ellipse in time as shown in Figure A-3. The case of circular polar-
ization occurs when the ellipse degenerates into a circle as shown in Figure A-4.
A

A
In particular, for backscattering, ko= -t . An incident elliptically

polarized field can be expressed in terms of Cartesian coordinates and hence,

as before:

>
]
o
L
=>
-
x>
g
1
w5 b

(1.1.2)

It is possible to express the fields in terms of an elliptic basis by a coordinate

transformation, U, such that
~ i . =1
.e ﬁ = U Ei“‘\ ] (1 £ 1. 3)
i
where -5 is the incident vector in an ellipt:c basis, Then

A A - i A A - i
B =S(-k,k)U1uz;; =s(-k,k)U1£lQ .

The scattered field is transformed by the same transformation so that in the

elliptic basis,

i

e A - - 1
g% =UEfﬁ US(-Q.MUIC{Q .

i
]
'
<:
!
§
f
|




Wave Direction

LINEAR POLARIZATION

FIG. A-2;

ELLIPTICAL POLARIZATION

FIG. A-3:

-y

FIG. A-4: CIRCULAR POLARIZATION
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This then gives a new scattering matrix U § U~ which is used for the c‘aSe in
which the incident and scatter 7 fields are referred to an elliptic basis. Since
the fields describing the incident and backscattered radiation lie in the same
plane the two-dimensional transformation U gives the change of basis from linear
to elliptic for both the incident and backscattered fields.

Thus, by using the S-matrix formalism, it is necessary to determine only

the scattering for linear polarization and the transformation giving the change of

basis to the particular basis of interest.

1.2 S-Matrix in Terms of Fixed but Arbitrary Basis

In order to be explicit, let p(H) and B(V) be unit orthogonal vectors*; these
ook
vectors define, respectively, directions of horizontal and vertical polarization

of an electric vector. A vector E may be written in terms of this basis as

p(H)

— - A A = -~ H A

E = 5@ B +5v) Bv) = (e, £(V) ( ,ﬁ(v)> E'HY) B,
E(H)

where E'(HV) designates the transpose of the column £ )

if f)(A) and f)(B) are an arbitrary pair of unit orthogonal vectors

co-planar with P(H) and S(V), then they must be obtainable from P(H) and P(V)

by a unitary transformation***

*
Orthogonal is to be interpreted in the sense that two vectors P(A) and P(B;
are orthogonal if their product §(A) . P*(B) is zero, where the asterisk
indicates complex conjugate; unit in the sense that a vector D(A) is a unit
vector if the product P(A) - P*(A) is 1.

> Horizontal will mean tangent to the earth with horizontal, vertical, and
direction of propagation beinz mutually orthogonal.

*kk

w(1J) io defined a8 the product B(I). P*(J). Note here alsc thut u* (L5} = u(JD.
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u(AH) uw(AV) -1
= U(AB;HV), U "(AB;HV) = U*'AB;HV) = U(HV;AB),
u(BH) u(BV)
i.e., Q(AB) = U(AB; HV) S(HV), where the asterisk indicates complex conjugate
of each element of the matrix and the prime indicntes the transpose of the matrix.
Since the AB system will in general be used to describe some elliptical
polarization, it is preferable to use distinct systems of unit vectors to specify
the incident and scattered fields. This is done so that right-hand elliptical polar-
ization may have the same sense with regard to the coordinate system for incident
radiation as it does with regard to the coordinate system for scattered radiation.
So if
i

$'AB) = UAB;HV) BHV)
is prescribed for the incident system, the desired similarity of sense for the
two coordinate systems is accomplished by writing

3%(AB) = UX(AB;HV) B(HV)
F 4 AS - Ai ¥4
for the scattered system. Thus P {AB) =p *{AB).

Ap incident vector fi may be written in terms of either the basis ﬁ(HV)

or the basis P (AB):

E = gluv) v = elaBpar .

From this relation it easily follows that the two sets of components of E' are

connected by i i
E(AB) = U*(AB;HV) E(HV). (1.2, 1a)

Similarly for a scattered vector 25 the relation between components is

£%(AB) = U(AB;HV) EYHV) . (1.2.1b)
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Since both the incident and scattered clectric vectors are expressible in
terms of either unit vector basis, there will be four transformations;i.e.,
scaitering matrices, relating the components of the incident vector for either

basis to the components of the scattered vector for either basis,

ES(HV) = S(HV; HV) E'(BV) , (1.2.2)
ES(AB) = S(AB; HV) E'(HV) , (1.2.3)
ES(HV) = S(HV; AB) ENAB) , (1.2.4)
ES(AB) = S(aB; AB) E(AB) , (1.2.5)

where the two indices in front of and following the semicolon indicate
respectively rows and columns of the scattering matrix. For example, if

equation (1.2.3) were written in detail, it would read”
( ES(A)> s(AH) s(AVI\ /E\H)
\ E3(B) s(BH) s(BV)/ \E'(V)
The elements of these matrices are associated with effective radar

cross section ¢ hy the following definition:

S {2
¢ = lim 4xr —;-P—— , (1.2.6)
TY—peo ﬁ

A . . . - .
where n is a unit vector denoting receiver polarization. For example, if

El = £(14) and P = B(V), then

E® = EB(H) PR + ES(V) B(V) = s(HH) B(H) + s(VED B(V) ,

- v o =

* A
In 8{LJ), p(J} designates the incident polarization.
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and

2 - : 2
c(VH) = lim d47r EAJ(V)- = lLim 4rr° s(VH)I : (1.2.7a)
I' »x p(H) IF'—sx
In a similar fashion it can be shown that
() = m dnf [san| . (1.2.7h)

r+w
These ¢(1J) will be called CROSS POLARIZATION cross sections,
Using equation (1.2.1) in conjunction with equations (1.2.2) through
(i.2.5), it follows that any three of the scattering matrices can be expressed

.n terms of the fourth., Thus, for example,

S(AB; HV) = U(AB;HV) S(HV;HV) U%(HV; HV) , (1.2.8)
S(HV; AB) = U(HV; HV) S(HV; HV) U¥(HV; AR) , (1.2.9)
S(AB; AB) = U(AB; HV) S(HV; HV) U*(HV; AB). (1.2.100%

This means that if S(HV; HV) is known completely any scattering matrix
can be calculated from it. Since the elements of S(HV; HV) are complex numbers,
there will be eight real numbers (four magnitudes, four phases) required to
specify S(HV; HV) completely. This is reduced from eight to seven because

only relative phase differences can be calculated. It is further reduced to five

* More generally, S(AB; JK) = U(AB; HV) S(HV; HV) U*(HV; JK), where JK
indicates an arbitrary basis, U(HV; HV) and U*(HV; HV) have bezn included
above for consistency. (They are each equal to the identity matrix).
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for backscattering because of the reciprocity theorera™ and the conservation of

energy principle.**
To recapitulate, assume that ls(i’-IH)l , ls(HV)I , ,s(vv,\l ,| s(AH)i ,

I s(AV)I are known; from these quamitizs the differences of phases {or relative

arguments) of s(HH), s(HV), s{VH), and s(VV) can be determined; i.e., the

complete matrix

“s(HH) s(HV)
S(HV; HV) = (1.2.11)
s(VH) s/VV)

can be found.

Since s{1J) and u(1J) may be written:

y
sl = &1)

u(I)

x5 i « 5
I Ei and E% are two given incident electric vectors, and E? and Ez are the
respective Bcattered electric vectors, then the reciprocity thecrem states that

R R A
i i 8. i ] i
ES(H) EXH) + E (V) Eg(V) = Eg (H) Ey(H) +E; (V} Ey(V) .

If equation (1.2.2) is used to state this theorem . tirety iu terms of the
components of the incident vectors, it follows that

. « 3 N j .
S(HV) (E}(V) EL(H) - E3(V) Ei(m) = (s(v.u) EL (V) £3(8) - EX(W) Ei(m?)

or
s(HV) = sa(VH) .

From this equality and equations {1,2.8), /1,2.8), and {i.2.10), it follows that
s(LJ) = s(JD) for I ¥ J.

2
Because energy must be conservea, it follows that

o(KA) + o(KB) = o(KH) +o(KV) ,
where K may be H, V, A, or B,
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et

it follows from equation (1,2.8) that

2
!s(AH)l : = I u{AH) s{(HH) + u(AV) s(VH)l

2 2 1

= l u(AH) s(HH)I +|u(AV) s(VH)| +2iu(AH) u(AV) s(HH) S(VH)l

X cos [e(nu) - 6(VH) + P(AR) - BAVY] . (1.2.13)

Therefore,

coS[G(HH) o) + fam) - pravy| = Lsanl’ - luam soml” - luav) svm”
] 2 Iu(AH) uw(AV) s(HH) S(VH)‘

{1.2.14)
where 6(17) = arg s(1J) and §(1J) = arg u(1J) .

Similarly,

coS [G(HV) - G(VV) + ¢(AH) - p(AV)] = IS(AV)‘ 2 - iU(AH) S(HV)lz ’l u(AV)__'?(VV)i 2 .
L I 2| u(AH) u(AV) S(HV) s(VV)|

(1.2.15)
An expression for the difference 9(HH) - &VV) may be obtained from
equations (1.2,14) and (1.2.15). A check for this difference can be obtained

by assuraing chat ¢(AA) is known; then the difference 8(HH) - 8(VV) can be

!
calculated directly as a function oi" S(AA)i R

s(HH)| , is(VV)' , and the u(1J).

The above argument may be summarized in the theorem: If o (HH),
o (HV), o(VV), o{AH), and ¢ (AV) are given, then the matrix S(HV; HV) can be
determined to within an arbitrary phase factor; and from S(HV; HV) any scattering

mairix can te found.
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APPROACH TO THE MULTIPLE-COMPONENT BODY PROBLEM

In Szction 1 it was shc vn that for a single simple geometric shape, or

a complex shape considered as a unit, the scattering matrix S(HV; HV} can be
completely specified from a knowledge of the five radar cross sections o (HH),
" ¢(HV), o(VV), 5(AH), and s(AV),

However, in an analytic treatment of the scaitering matrix for a complex
configuration consisting of many components, each of which is a simple geo-
metric shape, a somewhat different approach must be used since component-
wise calculation of ¢ross sections dues not furnish information as to phase
differences between different parts of the target. Il is reasonable to assume
that for each component of the scattering body expressions for certain of the
sue) may be obtained directly from expressions for the scattered fields in
terms of the incident ficlds. Then, to find certain o(1J), to be specified below,
as fairly smooth functions of aspect and to minimize computational labor, an
average with respect to phase is made over the set of components of the scat-
terer. Such an averaging procedure assumes random phase relations among
scattered fields of the components, and requires a knowledge of nine* real

numbers for the determination of arbitrary «(1J).

*
By the reciprocity relation; without reciprocity, 16 real numbers would have

to be known,
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That only nine real numbers are needed may be seen as follows: Let

uk (HD\
s(13) = (u(IH) u(IV)) S(HV; HV) ) (2.1)
u*(VJ)

represent, for the entire scattering body, any of the linear relations among
elements indicated by equations (1.2.8), (1.2.9), or (1.2.10). The averaged

2
quantity ls(IJ)! is then

]s(IJ)I2 = s(IJ) s*(W)

= (u(IH) WIV)) () (u*(IH) w*(IV)) S(HV; HV) x S*(HV; HV)

u* (HJ (HJ)
(2.2)
u*(VJ) (VJ)
where (¥) indicates a direct (or Kronecker) matrix product® »**and the bar

indicates phase-averaged matrix ¢lements, Leta, 8 denote any of the combinations

*
The definition of a direct {(or Kronecker) matrix product is illustrated by the
svample

a11b11 211b12 21201 212012 213P11 213b12

ajj 2j2 313 ® b1 by 211051 211022 212P21 212P22 213b21 213b;;
851 855 253 by1 b b1y 321by, 322P11 222012 22311 223012

;1021 32105, 825077 222022 223021 223b22

* %
In equation (2, 2) the following theorem has been used:

(ABC) ® (DEF) = A@DEBEE(C TP

where A,B,C,D,E,Fare matrices of suitable dimensions, As applied in
equation (2.2) it should be nated that s(1J) s*{13) = 3(W)) @ s*(LI).
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HH, HV, VH, VV;if s(a) = z sm(a) where the sum is taken over the
m

set of components of the entire scattering body, then the expressions s{a)s*(8)
in the right-hand member of equation (2. 2) are given by

Z_j Sm(a)sn*(B) = Z sm(a)sn*(B)

m,n m,n

s(a)s* (B)

2.3)

i[0p,(e) - 6,8)]

-y

= Z !sm(a)sn(,@)l e

m,n

Since it is assumed that random phase relations obtain among scattered ficlds
of the components, the last sum is zero for m =f= n. Hence, equation (2.3)

becomes

s@s*(B) = Z s (@5 *(8) . (2.4)

n

2
Thus to obtain an element of the form ! S(I.I)l = o(1J) it is necessary and

sufficient to know a certain set of quantities sn(a)sn* (B) for each component.

Since @ and 8 may take any of the values HH, HV, VH, VV ii will be necessary

The matrix
S(HV; HV) & S*(HV; HV) =

s(HH) s*(H s(HH) s*(Hv) 8(HV) s*(HH) s(HV) s*{HV)

8 s*(V s{HH)} s*{VV}! s8(HV) s*(VH) s(HV) s*(VV)

. o ] FTENEGT X i T
RAT DRI SUHALTD SRR N SN 01 1 0 . o i

(2.5)

s(VH) s*(HH) s(VH) a*(HV) &s(VV) s¥(HH) s(VV) s*(HV)

SV SR (VD S(VE) VY] S(VVI SRIVE] (VI 8% (VW)
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to know a set of six quantities, three of which are real, three complex (eq. 2.5).
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is of course not a scattering matrix. It i8 made up of the direct product of
two scattering matrices, and will be called an § S* - MATRIX.
Assuming reciprocity, and taking into account that [ sn(a)sn* (B)] * 2

sn* (a)sn(B), it follows from equations (2.4) and (2.5) that it is recessary and

sufficient to know the six numbers
sn(HH)sn*(HH) » 8,(VH)s *(VH) , 8 (VV)s *(VV) ,

sp(HE)s *(VH) , s,(HH)s *(VV) , s (VV)s *(VH)

for each n (component of the body) in order to determine an § (:) S* - MATRIX

and hence the elements 'S(IJ)I 2,
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§ 3 INDEPENDENT CROSS SECTIONS APPROPRIATE TO
% MULTIPLE-COMPONENT BODIES

Foah gen

It was shown in Sectior: 2 that o (I1J) could be obtained from the independent

set |s(2H) 2, [s(HV)Y, [s(vV)|?, STHE) s*(HV), S(HV) s%(VV), and S(VV) 8% (HH).

In this section it will be shown how o (1J} can be obtained from a basic st of

nine average effective cross sections,

To do so, it is pecessary to determine the most generzl set of basis

L TP Yy
A

vectors 1/)\(A), S(B), in terms of H(H) and Q(V). The normalization of P(A) and ﬁ(B)

, sl - e
ke mmw’!%WW«%

requires that P(A) - p*(A) = 1 and f‘(B) . _a*(B) = 1. The most general vectors

-.
W i
o .

satisfying these requirements are:

19 i9,
Q(A) = e ! cosaﬁ(}{)-!-e sinaﬁ(V) R

i i
-e 3 sit 8 S{H) +e ¢4 cos 3 S(V) .

b
e
I

There is the additional orthogooelity requirement B(A}. P*(B) =0, or
i(p, - 9 K, - )

-e cosasinB+e ginwces B = 0,

*
Thus, ¢1 ~P3=9, - 9)4, anda =8 . The valuee of the cross sections ¢(AJ)

-i -1
and o (BJ) are not affected by multiplying S(A) and 6(13) by e ¢1 and e &

3

respectively. As a result, the most generai 1:asis vectors which need be
censidered are of the form
ﬁ(A) = cosa 6(H) + en’ sin a p{\) . (3.1)
/B = -simeBlw+ e’y cos a P(V) .

"y
Actually there are other solutions but they do not result in increased generality.

e

y

3 .-

E N Avd

)’ .

I i i i
. ]
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The corresponding transformation matrices are;

cos a ely sin a cos a - sin &
-5in e Ccosq e sina e coSs «
(3.2)

Using equations (1.2.8), (1.2.9), and (1.2, 19), it follows that

s(AH) = cos a s(HH) + eiy sin a s(HV) ,

s{(AV) cos a s(HV) + eiy sina s(VV) ,

1 i? 1 2iY
s(AB) - sin 2a s(HH) +e cos 2a s(HV) + = e sin 2a s(VV) . (3.3)

Taking the squares of the magnitudes of equation (3.3) yields:

|s(AI-I)|2 = cos’a 'S(H H)Iz + sin’a ls(HV)i2 + sin 2a cos ¥ Re s*(HH) s(HV)
- sin 2a sin?” Im s*(HH) s(HV) ,

2
Is(AV)I = cos’a ls(}{V)I2 + siny l s(VV)I2 + sin 2a cos Y Re s*(HV) s(VV)

- sin 2o sin Y Im s*(HV) s(VV) ,

2 2
ls(AB)l2 = i. sin’ 2a ls(HH)I2 +cos’ 2 ls(HV)l +% sin® 2o s(VV)!
- % sin 4o cos Y Re s*(HH) s(HV) + .é. sin 4« sinyY Im s*(HH) s(HV)

- % sin® 2a cos 2 Re s*!HH) s(VV) +% sin® 2o sin 27 Im s* (HH) s(VV)

+-§- sin 4a cos ¥ Re s*(HV) s(VV) - .;. sin 4a sin¥ Im s*(HV) s(VV) ,

(3.4)
where Re and Im refer respectively to the real and imaginary part of the

quantity they precede.
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The squares of the magnitudes of the other elements are obiained from

the conservation of energy relations, together with the reciprocity relation

s(13) = s(J1):

s(BH) 2 = |s(um)|” + |suV)|® - |stam)|’
sBV) 2 = |s(EV)|Z+ |s(vW|? - s(AV) :
s(aa)? = [s(am|®+ |s(awm|? - [saB)?
s(BB)* = [sBH)| + |sBV)|? - [saB)|®. 3.5)
Fora =45, ¥=90°, let A=Land B=R. Fora =45°, ¥ =0°, let
A=+andB=-, Fora=45", ¥=45°, letA=/, B=P. The polarizations

H, V, L, R, +, -,./\, P, being considered are shown in Figure A-5.

| L

/4

|

H (Horizontal) V (Vertical) L (Left)

R

NN

N

R (Right)

P

FIG. A-5: POLARIZATIONS H, V, L, R, +, -,/\, P
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Then it follows from equation (3.4) that

s{LH) 2

s(LV)

s(LR)

s(+H) l 2

s(+V) 2

S(AP)I 2

I
o f

[ ST

e

s + L [s)f” - tm sx(am siarv)

™

s(HV)I2 +% !S(VV)lz - Im s*{(HV) s(VV)

] P

semf” + 1 |svW[* + 1 Re s am) s(vv)

s e

s(HH)I2 + ‘;‘- ;s(HV)I2 + Re s*(HE) s(HV)

sv)|” + 1 |s(vv|* + Re sk (av) s(vv)

]s(HH)[z+-i- |svv|*+ 3 1 sx(em) (VW) (3.6)

If the scattering matrix S(HV; HV) has been obtained, then from S and

equation (3.6), the cross sections o (HH), o(HV), ¢(VV), o(LH), ¢(LV), ¢(LR),

o(+H), o(+V), and ¢(AP) can be found. From these nine cross sections the

cross sections for all other polarization combinations may be obtained by using

equations (3.4), (3.5), and (3.6). Use of equation (3.6) in equation (3.4) gives

c(AH) = [cusza -.%. 8in 2o (siny + cos¥y )] o (HH)

+

+

[sin“a --;- sin 2o (sin Y +cos‘)’)] o(HV)

sin2a cos ¥ «{+H) + sin 2a sin?Y o(LEH) ,

c(AV) = [cosza --l— 6in 2 (8in ¥ + cos 7)] o (HV)

+

[sinza —% gin 2a (sin ¥ +cos? )] oe{VV)
sin 2a cosY o (V) +8in 22 8in¥ o(LV) , (3.7
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s(AB) = L sin'2a (1 +cos2y -sin2y) [o(HH + #(vV)
+ 71 sin 4a (sin? +cos?) [a(nm - cr(VV)] +_;. sin 4o cos¥ [_ o (+V) -0(+H)]
+ 1 sinde sin?| o(LV) - a(LH)’ + cos®2a g(HV) + sin’2a sin 27 c(AP)
> ]

sin’2e cos 27 o(LR) .

From equation (3.5):

o(BH) o(HH) + o (HV) - ¢{AH) ,

¢(BV) = o¢(HV) +o(VV) - 0(AV) ,

o(AA) = o(AR) + ¢(AV) - ¢(AB) ,
¢(BB) = o(BH) + ¢(BV) - ¢(AB) ; (3.8)
and by reciprocity,
oc(HA) = o(AH) , o(HB) = o(BH) ,
o(VA) = o(AV) , o(VB) = «(BV) ,
oc(BA) = o(AB). (3.9

Equations (3.7), (3.8), and (3.9) give all of the cross-polarization cross

sections of interest except ones of the form o (AJ) where A and J are polarization

vectors from different bases. These can be cbtained by using the s ® S* -
MATRIX defined in the preceding section. The elements of the 5 & S* - MATRIX
can be obtained from equation (3.6) and the cross section can be obtained from the

8 ® 8* - MATRIX defined in equation (2, 5).
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POLARIZATION EFFECTS AND THE PHYSICAL OPTICS APPROXIMATION

No REPOLARIZATION* effects obtain when physical optics is used in
computing the monostatic single scattering cross sections. However, the
physical optics approximation does yieid repolarization effects for monostatic

! muitip'e scattering cross sections.
Since the assumptions**, of physical optics are employed in this report,

according to the raethods of Referenez A-1, to obtain cross sections for many

simple shapes representing component parts of an aircraft, it is necessary to
consider the degree to whicut the physical optics approximation agrees with
experiment and with exact solutions when available.

For arbitrary directions of incidence on a general body, if any radius of
curvature of the body is of the order of a wavelength in the neighborhood of a

stationary phase point, neither the physical optics prediction of no repolarization

* Repolarization i3 said to occur when S(HV;HV) is not of the form (q O) .

* % o q
A simple and commonly used assumption for a body possessing principal radii
of curvature R; and R; which are everywhere large compared tc a wavelength
is, as stated in meference A-2, p. 462, that ', ,. the induced currents and
fields radiated from any infinitesimal unit of area are very nearly those which
would be ohtained from the same area if it were part of an infinite plane, tan-
gent tw the surface at the location of the element of area. The currents and
fields on the surface are determined by the boundary condition that the surface
magnetic field is entirely tangential and is twice the tangential romponent of

i the magnetic field of the incident wave'',
* For a detailed discussion of the assumptions of physical optics see Reference
3 A—IS, p. 9.
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nor its prediction of magnitude should be accepted without further investigation.
Likewise in those cases where any radius of curvature is less than the wavelength,
the assumptions of physical optics make the results suspect, although other con-
siderations for a particular case may show the results to be quite acceptable.

For example, for the Poynting vector incident along the axis of symmetry of a
perfectly conducting surface of revolution, the physical optics indications of no
repolarization are valid. Such validity may most easily be seen from an analysis
of the boundary value problem involved.

Since the boundary conditions may be given in terms of E alone, and since
f*fis given in terms of f by Maxwell's equations, the problem of a perfect con-
ductor may be stated in terms of E alone. The wave equation for E and the
boundary conditions are unchanged by reflection in the plane P containing the
incident Poynting vector and the incident electric field. Therefore, to any
solution for B with components normal to P, there must correspond another
solution with normal ccmponents cancelling these. Since two solutions are im-
possible by uniqueness, E® must lie in P. Thus there is no repolarization, So
the validity of the applicaticn of physical optics for the Poynting vector incident
along the axis of symmetry of a perfectly conducting surface of revolution will be
a question of magnitude only.

It has be:n observed that for the case of a cone or a paraboloid of
revolution with the transmitter and receiver on the axis of symmetry the physical
optics answer agrees both with experimental results and with the exact theory,

as illustrated in References A-7 and A-16. Further, it has been found (Ref. A-8)
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that the geometric optics fields for the infinite dihedral agree with the exact

oy

4 fields for dihedral angles of 7/n, n =1,2,..., and that the geometric and
K physical optics fields are in agreement for these cases,
These results suggest that the physical optics cross section may be
expected to agree fairly well with the exact solution for a wider range of objects
than the large-principal-radii criterion would indicate.

b ; t is, of course, not necessary to be limited to the particular method

discussed above, A different assumption (as in Kerr's example of the finite

Shsuay ol
Liotii S

cylinder) is that the exact solution for a similar problem (in Kerr's case the

¢ ot
4

infinite cylinder) may be used as a guide for the assumed field .at the surface of
the scatterer. It would seem reasonable to expect this solution to be a good
approximation as long as it is used advisedly.

Another approximate method has been suggested by Fock (Ref. A-9). It
is limited only by the restrictions that the scatterer be convex and the radii of
curvature be much greater than the wavelength, so that it is applicable tc a wide
variety of scatterers and will yield both scattered magnitude and polarization

information,

&

For those components of a scattering body to which physical optics applies

TN

é it may be assumed that the scattering matrix S(HV; HV) has the form
- 4{‘ 1 0
E | ¢ S(HV; HV) = S(HH) . (4.1)
E |«
; ! ) § From this relation the scattering matrices S(LR; HV), S(HV;LR), and S(LR;LR)
b may be determined from equations (1,2.8), (1.2.9), (1.2.10), and (3.2) by putting
N
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A=L, B=R,ac= 45° and Y =90°, The unitary transformation matrices

U(LR; HV) and U(HV;LR) involved here are giver by [from equation (3, 2) with

a=45°, 7 =9o°] ,

1 i 1 -1
U(LR; HV) = —1_ ; UHV;LR) = —L_
Va2 \4a i V2 -4

It follows from equations (4.3) and (3.6) that, for the nine cross sections
of interest (as given in Sec. 3), the following relations hold where physical optics

reasoning is applied:
o(HH) = o(VV) = o(LR) , (4.42)
o(HV) = 0, [(r(RR) = g(LL) = 0 also] . (4.4b)

o(LH) = o(LV) = o(+H) = o(+V) = o{AP) = -;— o(HH) .

{4.4c)

1

4.2)
: Hence,
1 i
S(LR; HV) = < —s(HH) (4.3a)
-1 i V2
/1 4
S(HV; LR) = s(HH) (4.3b)
i i V2
0 -1
S(LR; LR) = B(HH) o ooy B0} e
-1 o/ 77 Ce e s
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g 43 CROSS-POLARIZATION CROSS SECTIONS OF WEDGES
‘i The trailing edges of wing and tail assemblies of modern aircraft, in
4 5:{' A
% l particular the B47 aircraft, are thin and sharp enough to warrant simulation
, by wedge, or tapered wedge, shapes. Since sharp edges will, in general, give
i 1
: L rise to repolarization, such edges are considered in this section,
y
B
N ~~
i )/- po
|, \ x
x
FIG. A-6: WEDGE COORDINATE SYSTEM
- : 5.1 General Theory
E i E
i Consider an infinite perfectly conducting wedge whose edge lies along the
2t
| § z-axis and whose intersection with the xy-plane makes an angle fi, with the positive
- x-axis.
b
f
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To find the totai electric field for arbitrary incidence it is necessary to
solve the equation
2, .2 =2
(Y +K)E =0, (5.1.1)

subject to a radiation condition at infinity and to the conditions

V- E=o0 , in space , (5.1.2)
f xE =0, atthebody , (5.1.3)
where fi is a unit outward normal to the body.

Let the direction of incidence be restricted to the xy-plane with
polarizations (a) perpendicular to , and (b) parallel to the edge of the wedge.

Then equations (5.1.1) and (5.1.2) are satisfied if E has the form

A

L,¢ (r, P
or

-Ikl— curl /i\zlll (r, 9 ,
where

2
V+5) v, p =o*. (5.1.4)
The form E = - 1/ik wrl?zw(r, #) suffices for case (a) with equation (5.1.3)
implying the condition

D Yir,t f),=0. (5.1.5)
an

*A cylindrical coordinate system, r, f, z, is used throughout this section.
Unit vectois for these directions are ?r, ,’fz. The unit vector designating
polarization perpendicular to the edge of wedge is ﬁ(a) =4 ,and the unjt
vector designating polarization parallel to the edge of the wedge is Q(b) = iz.
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Case (b) requires the form E =?z|ﬂ(r, @) with equation (5.1.3) implying the

condition
Ylr, t¢o) = 0 , (5.1.6)

In a recent paper (Ref. A-10) F. Oberhettinger obtained expressions
for the Green's functions for the wave equation for the conditions {5.1.5) and
(5.1.6). LetQ(p, ¥ + P be the intersection with the xy-plane of a line source
parallel to the edge of the wedge and P(r, f + §,) be a point outside the wedge.
Oberhettinger expresses the incident cylindrical wave in the form
"b(i) - ng) (-kR) = —ii K, BR) = il Koij B(r*+p%-2rp cos(¢-7)> 1/2]
(5.1.7)

where k has been put equal to i3. This equation is expanded in the form
4 0
. 4i
;/;(i) =z f Ki; (Br) Ki: (Bp) cosh [z;(:~i¢ -7[) ] at , (5.1.8)
0

where Kp(Z) is the modified Hankel function defined by
-~ et
724 _2,.\

1 2 H(Z) 7 e /

K(Z) = -2 ixe
u() > i

The total field {/)( 9 is given as the sum of the incident field ¢(i) and the reflected
field ¥ :

Yo = Yot ¥ - (5.1.9)

The reflected field can be represented in a form similar to equation (5.1.8)

a [ §(p+s,) {2 N
Y= = f Kit {Br) KiC (Bo) | £x(2) e +i{l)e a¢ ,
0 {5.1.10)
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where, by using equations (5.1.8) and (5.1.9), f; and f; are given by

! £(g) - £(§) = - sinh { Llr -y - w]

(%) 2 8P _ g r) o280 _ sinh[ C(x+ -¢0)] ,  (5.1.11)
for condition (5.1.5), and by

£(8) +£5(¢) = -cosh | ¢z -7 -§)
0 R

2% 28 .
fi(%) e ¢°+f2(§)e fo = - ccsh [((t+7-¢o)j . (5.1.12)

for conditicn (5,1, 6).

To dete™mine radar cross sections, the reflected Sields must be found
for conditions (5.1.5) and (5.1.6). In particular for condition (5.1,6) it follows

from equation (5.1. 12) that

©

b= -4 foxi! (Br) Ky (Be) A(S) ¥,

where
AR) = —1 ) sinh & acosh§ (p+7) +sinh § (2, -) cosh § (§ -7)
sinh 2L @,
or ©
-3
Y= i I e nﬁ? (k) 1V (kp) AZ) d¥ . (5.1.13)
0 i

If the point Q(p,7 +@,) defined above is moved to infinity, the Hankel

function Hﬁ') (k p) may be replaced* by its asymptotic value .

X _ i
‘/z e""”z 2
rkp '

*
This is justified in Section 5.2,
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To express equation (5.1, 13) in a manner appropriate to the form e—ikrcos([b-‘)')
for an incoming plane wave, the asymptotic expansion of Hf i.) (kp) must be
divided by the asymptotic expression
ikp ~ TL - ikr cos(f-7)
- '/ 2 . 4 f
7kp
-ikr cos(f-7)
of equation (5.1.7) and multiplied by e . Thus equation (5.1.13)
becomes for incident polarization (b) parallel to the edge of the wedge,
© _{r
(b) , 2 (1)
/] =~ -i e Hje (kr) A(%) d¥ . (5.1.14)
0
If it is further assumed tbat the value of r is very large, an asymptot.c expansion
can be substituted for the Hankel function in equation (5.1. 14) giving*
5 ikr+.:1’_i. %
. w(b) = - V"""' e j A(g) dS .
& wkr
0
i
- The remaining integral is convergent and may be evaluated for
20,> =+ ' p+r l
1 Z¢°>lz¢°"|+l”"’|
to give (Ref. A-11, page 55),
3 (b) 1 I/T‘r — W, P
- -~ = l/— e = 4 = | gin — (5.1.15)
': [¢)

*
This is justified in Section 5,2.
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and

2
B=003M-cosl—. .

Zpo 2¢0
Using condition (5.1.5) and equation (5.1.11) it can be shown for

incident polarization (a) perpendicular to the edge of the wedge that

xi
(a) ikr + 5= 2
v = l/_Zz_ e ¢ |1 1| g2 . (5.1.16)
af, kr A B Z¢o

5.2 Remark on the Use of Asymptotic Expansions of Hankel Functions in the
Integral Representation of the Scattered Field for a Wedge

The purpose of this section is the justification of the replacement of the

Hankel functions by their asymptotic expansions in the integral

N

(1)
Since the Hankel function Hi( (kr) has the representation

4.4

( 2 e 2 Jf° ikr cozh t

1)
Hi; {kr) =
0

and since the asymptotic form

i
2 1kr+r2t‘-:_ (1)
;E;- e . of H _ (kr)

14

has the representation

17

pLA! 1
f e Hy (o) Hy (o) AR d . (5.2.1)
0

e cos 8t dt , (5.2.2)

b
3




T A,

. . O+ 7, ir
P ikr+ 7 "4 p) + 1)
e = e H (kr)
akr 1/
9.1
e 2 * ikr cosh t
= <€ 1
= I e cosh — tdt ,

xi 2

0
? (5.2.3)

it will suffice to consider the problem of obtaining a bound for the expression

o ikr cosht (5.2.4)

j e (cosk tf2 - coslt) dt
0

More generally, if f{t) and g(t) are real valued functions such that g/t}/f'(t)

is of bounded variation and euch thatg(e)/f'(®) = 0, then

2w if0) © ift)  r
j s gdt-ie £O|= J.e d &0 | g
0 £(0) . @ |
¢ [la xit>_]
Joi . [f‘(t) dt . {5.2.5)

Taking f(t) = kr cosht and g{t) = cosh 1/2t - cos¥ t it fcilows that the

problem of bounding the expression (5.2.4) becomes the problem of bounding

e ©
i [ = L j 4 | cosht/2 -cosft| [4¢ ; (5.2.6)
8 kr  Jo|dat sinh t

.-

and this is dJone as follows:
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—_—— dt

kr1l

j- sinh t(%sinh%t*rfsin !t) —cosht(cosh.;_t -cos{ t)

0 sinh2 t

cosh -;—t - cos!t! cosht

dt

> 2
x4 0 sinh t 0 sinh t

J” H_- sinh%-t‘ 4-|§sin§tl . f

inN

3 -]

J

& ' 0

sinh%td ‘ smgt‘dt

tojr—

N

©
Zsmh-l—tcosh—t J Zsmh—tcosh-l—t
2 0 2

i ‘.',, lcosh FILt - cos {tlcoshtdt

+
» J 2 .
i 0 sinh &

= 11+12+13 . (5.2.7

Each cf Il' I2 13 may be either bounded or evaluated in finite form:

o 2
= 1 . . x . <r? tdt o Sx .
l ry ;o L 8 2 !
: 0 coshit- 0 tcosh1 t

ool

1

cosh =t - cos{*] "ash tdt

IO( B QU ¢ QRVIRYS | SP. PN ©. AN
sinh2 4 2 2 4 2

E This integration ie performed as foilows: on pages 142 and 163 of
i

Reference A-11 the integrals

~ h X
cosh 3

f cos ax-cosbx  dx o o ¢ c>0
0 sinh cx x cosh 27 * *

O A O A | it "

(™Y

coshax -1 dx . _ ar
cosnax -1 22 - log {cos — c>la are given.
-[0 sinh cx x Zc) ) l . .
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Put a = 0 in the first of these formulas and add:

% br
cosh —
J. coshax-cos bx dx _ log - 2¢ ;

0 sinh cx x cosh 37_
2c

differentiate with respect to ¢ and seta = 1/2, b=%,c=1

cosh -—t - cos!t) cosht
.[ (~ at = T + 37 o 82
sml: t 4 2 2

Therefore,
tr A fr  mi|
- =2 kr.’. - —
2 (1) 2 1 2 "4, ,
(5.2.8)

A similar bound can be given in the case of the remaining Hankel function of
equation (5, 2. 1) for the difference between it and its asymp’otic expansion.
Finally, since every term of A(¥) is of the form
g  -ut
e

- e
———— Y S u DY
_y s )
ev; e L 4

it can be seen by using equation (5.2.8) a bound which goes to zero as 1/rp for

iarge r and p may be given for

[ (m V2 thr+ 32 -3¢ ““”"z’i T
A e \Hit (kr; - ""'l'_ '—_ A(L')dl -

rk
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5.3 Electrie Fields for Linear Polarizations

Let the incident ficld ",c polarized perpendicular to the edge of the wedge.

Then the scatitered electric field for the infinite wedge is given by

ikr+ﬂ 2 I
2s(a) 1A (a) ~ | 1 21 4 .7 |1 1] A
E = G xV =) - /M ¢ sinZ. |2 - 1% 5.3.1a
T af, Vie 20, (& B O

where A and B are given by equation (5.1, 15).

ikr+1xi
If '/l(a) is written as w(a) =D %—-’Z e 4 () , then

; i 3 7i

(a) tkr+ 2> -2 ikr+XM
/ 2 4 In
v = DfP)]| k]/2T e S V- }
V (¢ kr 2 !l k € r

‘/i-”— —g. ikr+%i~ A
an 1wdy 3
+DY ST “ e £1(@) iy

can be approximated, for very large r, by

. () ik”%

Ve % ikD % e 1Ph = 1k o& (s

in equation (5.3, 1a),

If the incident field is polarized parallel to the edge of the wedge, the

scattered electric field for the infinite wedge is given by

£ . (s.3.1»
ap, Vkr 20, {4 B[ °® ( )

tkr+ 2
gotb) -?zg,(b)z{_-.l.. P _1_+_1-]

5.4 Electric Fields for Arbitrary Polsrizations

If the incident field, with direction of incidence in a plane normal to the

edge of the wedge, has an arbitrary polarization; i.e., ii
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E =5 (s1n v+%yco8 ¥) + Ed) Ty = Efy+ EM 1, , (5.4.1a)

the scattered field is a linear combination of equations (5.3.1a) and (5. 3. 1b);

oo
L VE elkr'«t sin ~ E(a)?ﬁ-E(b)’}z ) E(a)Tg-E(bﬁz
4¢o kr 2 A B

o
(5.4.1b)

It was shown in Section A. 2, 8 of Reference A-1 that to go from the field
for an infinite wedge to the field for the class of finite wedges whose current
distributions are the same near the vertex involves only the multiplicative factor

-ir/4
1‘7"_{_— » Where L is the length of the finite wedge. Thus, if the incident
r

electric field is of the form (5.4. 1a), equation (5.4.1b) becomes for a wedge of

length L:
. ik -E®)? E(a)f, + E(b)],
B - Lel . o |E@ip-Ebi,  EfytEmi, (5.4.2)
ap 2o A B

5.5 Cross Sections fcr Linear Polarizations

The effective cross sections o for the finite wedge can now be given for
the cases where the transmitted and received radiations are of arbitrary polariza-
tion and the direction of incidence still in a plane perpendicular to the edge of the

wedge. The definition of effective cross section is, as given before by equation

(1.2.6)
2 Es' A2
¢ = lim 4m" | 2P . (5.5.1)
r—so | El

where 6 is a unit vector denoting the receiver polarization.
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For example, if £ = E(b)i, andp = p(b) =1, , then

. ikr 2
E® = -Le  4in T [ L —1-] E(b)T, (5.5.2)
and
2 3
o(bb) = l“—z- sin? Zf_ [L + _1.] , (5.5.3)
ap ¢, |A B

where o(bb) indicates that both the transmitted and received polarizations are
in a direction parallel to the edge of the wedge.
=i A A =8
If E = E(b)iy and p=p(a) = ‘?x sinv+ lyCos Y, then E is as in equation

(5.5.2) and
c(ab) = 0 , (5.5.4)

wiere o(ab) means that the transmitted and received polarizations are respec-
tively parallel and perpendicular to the edge of the wedge. When the transmitted
and received polarizations are both in a direction perpendicular to the edge of

the wedge; i.e., when 'ﬁi = E(a)(-'i\x Bin1+'fy cosY ) and f)\ = ﬁ(a) "?x sm‘)'dycos'y R

then

=8 L eikr ’,2 1 1
E = sin [T - i‘] E(a)?p (5.5.5)

and

) S T L I U W
o(aa) = -4—!,——2— sin E;— [-A— - 'E-] cos (’ -r) . (5.5.6)
[} (4]

5.6 Cross Sections for Circular Polarizations

For circularly polarized transmitted and received polarizations it

suffices to find o (Rb), ¢(Ra), ard ¢(RR), where R indicates right circular
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polarization, For incident radiation, unit vectors indicating right and left

circular polarization are respectively,

'i\(R) = Y—Zl‘: [(-?xsin7+’1‘ycos1)+ i'i\z:l (5.6.1a)
A _ 1 _A A
(L) = V—E [( ixsin1+fyc08'l) -1 lz] (5.6.1b)

For scattered radiation, the unit vector system is interchanged; i.e.,
aS
i (R =% and Y =1m) .

1 = E(R) {R) and § = p(R) =1° (R), then

ik
s _ER . Lot g @p{i_- ‘11?] it [ALJ,.%_] (5.6.2)

Yz ,r O 2f,

and

2 2 2
16 ¢oz po A B A B

i A -
I8 =E(kandp = ﬁs(R) = l:(-'i\xsin')'i-'i\ycos‘l)-iqv-%— , then E° is as in

equation (5,5.2) and

2 3 2
o(Rb) = XL gin? X [-1— + -l-] = —;_—c(bb). (5.6.4)

8} 20, | A B

=l i
Finally, if E is givenby E = E(a)(-?x sin7 +Ify cos?) and p by B(R) =

1/ VZ— [(‘?x sin ‘I-!-'i‘y cos 1)—i?z] , then -ﬁs is given by equation (5.5.5) and

2 2 2
o(Ra) = ZL_ gjp? % [i— - -:;] cos’(p - ) = % o(aa) . {5.6.5}
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5.7 Summary of Formulas

For backscattering, @ = 7 (direction of incidence still perpendicular
to the edge of the wedge) the effective cross sections obtained in Sections 5.5

and 5.6 become:
\

= ML+l
1. o(b) = M{c +D] v = x L’ it T
4p ? 29,
2, of(ab) = 0
2
3. o'(aat)==M—1—-1 2
C D 7 C = cos XL +cos XZ_ (5.7.1)
. ¢o 2¢0
M
4. o(RR) = Zgz—
2
5. «(Rb) = —;cr(bb) D = 1-cos X
zpo
6. o(Ra) = 1 o(aa)

/

C and D are respectively the values of A and B of equation (5.1. 15) for ¢ =7.

P R

5.8 Coordinate Systems

To apply the formulas of Section 5.7 to wedge-shaped components of
an airplane, the relations between the polar angles of the wedge and of the
airplane coordinate systems must be known. These relations are derived in 3

this section,

* A
Let 'i\x* , 'fy » 1¥ be a unit orthogonal set describing the airplane 1
x*, y*, z*- axes, with f§* and 8* as polar angles in this system. Lettx.li\y.li‘z

be a unit orthogonal set describing the wedge axes, with § and 6 as polar angles
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3 in this system; and suppose that the edge of the wedge lies along the z-axis

; \ ‘ # and that the wedge is symmetric with regard to the xz -plane.

3 For a fixed aspect 8* it is desired to find the azimuth, ¢_L* , for which

» ! the direction of incidence, P =7, is perpendicular to the edge of the wedge.

} '3 Let

N A A A

A 1 : o= hta Yragh

( 3 ’fy* = a,, /i\x"' a,, 'i\yi- 2, /i\z 581
Al

e Ay = A A

g i % 331 iy + a32 'i\y+ 333 1 .

v B .

&

; .‘ z*

b ": ‘,l_ /

T 9%

!

I _/ \Y*
E |

£ |
. i ’

|-

SR
: !ﬁ% FIG. A-T: FIG. A-8:

£ WEDGE COORDINATE SYSTEM AIRCRAFT COORDINATE SYSTEM
: | o
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Let tke unit vector ’i\zin the direction of the edge of the wcdge be given by

A . A . NPEAL .
i, = sina coe ik +smazsmBly +cos a i,

: * *
) A* pa.

= %
a3 1¥ +a,, v 33 1z

(5.8.2)

If the direction % of incidence is expressed by
v = sing* cos{b*?x* + sin@* sinf * /i\y*+ cos@ * ,i\z* . (5.8.3)
then for some specified aspect 8%, the azimuta ch‘ for which incidence is
perpendicular to the edge of the wedge (’i\z- O =0) is
cos (Qik -B) = -cot@* cota , (5.8.4)
where a = arccos agg and B = arctan azs/a13 .
The angle § =¥ for which incidence is perpendicular to the edge of the
wedge is given by
aj, sin@* cosP¥* +a,, sing* sm¢f +ag, oSG *

] * * %* *
3, sing cosﬂi +a__ sinf sin¢l +a31 cosf

tany = (5.8.5)

21

For incidence slightly out of the normal plane, say by an amount § u,
the cross section will drop off approximately A3/ 812L2(6 w)? (Cf. Ref. A-1,

p. 129), that is

o 2
non-normal - g’ ~ X

(5.8.6)
® pormal Brsz( 0 u)2

*
Thus it i8 possible to find § u for which & drops off by a given amount ;
rormal

it is,from equation (5. 8. 6),

fu s X (5.8.M

*
The amcunis used for the computations later are g’ =1/2, 1/10, 1/100.
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It is now necessary to find the change in azimuth angle § §* for which
O normal 4TOPS Off by the fraction g%; that is, find § @* in torms of §u.

From

ing* sin(p* *) 4 *
sin@ sm(gL +80 )1a33 cosfd

sin §u = 3 sinG* cos(f* + Hp*) + 2,0

(5.8.

it follows that

2
u & a, 4 sing* cosf ( - ﬁ;ﬁ‘,) - 2,4 8in6* sinfix §g*

. , _ bpx? .
+a,, sing* sm¢f ( _gl_ +a,, sing* cosﬂilf dpx +a,, COSO*

R

2
x 00% * | - * ing * *
a4, €06 > + 0¢ [ a, 4 8ind sinﬂf +a,, sin c:os¢_L J

2 2
bu & a__cosgx 8B*" 4+ 3p=x 'Vsin&* L (5.8.9)
33 > 33

Solving equation (5.8.9) for @ * yields

- }/sinze* -a 332+ 'Vsinze* -a 3&2+ 2244 cosf* (Hu)

dpx =
g4 cosf*
and if sin’6% - a 332>> 224, cos0* (8u), equation (5.8.10) gives
bpx du . (5.8.11)

2 3
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5.9 Wedge S-Matrices in the Airplane Coordinate System

Let the designation of axes be as given in Section 5.8 and the direction
of incidence of energy on the airplane be as given by equation (5.8.3). Horizontal
polarization is taken to be polarization parallel to the ground; i.e., in the x¥y% -
plane of the airplane coordinate system:

A A
BH) = -1¥ sinp* +?y* cosp* . (5.9.1)
Vertical polarization is perpendicular to horizontal polarization; hence
A
BV) = YxBH) = - crab% cosp * ,i;* - cosh* sinf* ’i\y* + sing* li\z* . (5.9.2)

The polarization directions 6(a) and f)\(b) of Section 5.5 may be written

in the airplane system as

A A A N IA N
Bb) = sina cos p5# + sina sinB i+ cosa Ip [=1p =a,3Tx +2,50r +2550],

(5.9.3)
A ACA . A
pa) = v xp(b) = (sinf* sinf* cosa - cosf* sina sinf) i¥
+ {cos§* sina cosB - sinf* cosP* cosa) ’i\y*
+ (sin@* cosf* sina sinf - sin@* sinP* sina cosf) /iz* . (5.9.4)
. u(Ha) u(Hb)
The matrix U = (u (Va) u(Vb))

can now be given explicitly as

U = - sin6* cosa + cos88* sina cos(ﬁ# -B) -sina sin(ﬂ* - 3)) (5.9.5)
- sina sin(@* - B) sind* cosa - cos8* sina cos(P* - B) /,

where the elements u(Ly) of the matrix are determined from the previously

given relation u{lJ) = p() * p*{(J). Since the direction of incidence {8 to be
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perpendicular to the edge of the wedge; i.e., 0 is perpendicular to f)‘(b), the
it angle ¢f for which such perpendicularity occurs (for fixed 6 %, a, B) is given

by equation (5.8.4)

3 cos(QL -B) = -cot@* cota . (5.8.4)

For each such angle Q)* U reduces to

- coso csc @# - sina sin(§* - B)
U= + : (5.9.6)
1 - sina sin (QL - B cosa csc %

From equation (5.4.2) the S-matrix S{ab; abj can be read off as

ikr 2 (—1— - —1—-) 0
S(ab;ab) = L€ _ gin T c D

arp, 2P, EANE (5.9.7)
o)

b

Using equation (5.9.7) in conjunction with equations (5.9.5) and (1.2.10),
the matrix S(HV; HV) = U S(ab; ab) U’ in the airplane coordinate system for any

wedge component of the airplane is

e ey

2cos’a (l + _1_) sina cosa sin{f * -B8)
(M )1/2 eikr Csinie* C D C sin@*
x

r »

S(HV; HV) = El“

C sin@* C sin 8*
e -l

(5.9.8)

gina cosa sin(f * -B) 2cos’a
(c o) Gewtex

WAt | b RS

o\ e o—— ———— o

where M, C, D are given by equation {5.7.1).
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CROSS-POLARIZATION CROSS SECTIONS OF WIRE LOOPS

In addition to those sharp edges on an aircraft which must be represented
by wedges there are, particularly for jet aircraft, sharp edges of a circular or
loop shape. Such circular sharp edges are represented by wire loops which are

discussed in this section.

6.1 General Theory

As pointed out ir Section A.2.10 of Reference A-i, the scattered field
from a small straight piece of thin wire is similar to the field of a dipole. It

is of the form

- A A .
E} = g IX #xd R T (6.1.1)
r

where d.£ is the length of the wire, x/'\is the unit vector to the field point, r is
the distance to the field point, and c'i\ is a unit vector along the wire. Kis a
proportionzlity factor given by,

K=x@¢" 8, (6.1.2)
where ?Ji ie a unit vector giving the direction of polarization of the incident
electric field and X, is a constant to be determined.

From the definition of cross section given by equation (1.2, 6) the cross

section of a small straight piece of thin wire is

i i
¢ = dar Kf(f : 9) B 3)2 (dlv)z . (6.1.3)
|| e
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where superscripts i and r denote transmitter and receiver polarizations
: A . . Y . A A
respectively. If p (for both i and r) is parallel to the wire, (p - d) = 1; for

this case (¢0 =¥, ¥ = 0) equatioa (5.5.3) gives for the cross section

2
. (6.1.4)

T
where, in equation (5.5.3), L has been replaced by d£. Comparison of

equations (6,1.3) and (6.1.4) for this case (i.e., f)\parallei to wire) yields:

=i
K, = |
27

Hence the field equation (6.1.1) may be written as

i ] /AL A, A A
as _ 1B @D | fadxd | ke L,

ds Zr r

(6.1.5)*

To find the scattered field for a wire loop, an integration is made over the loop:

f . A_ A
|£ Jf @4 rxgrx_ﬂ_l K2 il
r

Zt loop

'E‘S

The effective cross section of a wire loop is then, since 6 .t 0,

- 2 2
comanf| B E oL [ty e gl
E loop

i (6.1.6)

where p is the distance measured in the direction of {ncidence,

*To take into account the phase lag in making the round trip from rader to wire
and back, equation (6.1.1) has been multiplied by e!* to obtain equation (6.1.5).
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Consider a loop of radius a i1n the xy~plane with center at the origin
Figure A-9. On the wire x = a cosf, y = a sinf; thus d£ = adp; and the direction
of the dipole is d= -’i\xsinﬂ +'i\ycosp. Let the direction of incidence be in the

xz-plane and be given by V= ?xsine —?zcose; this makes p = (x’i\x-'-y?,)- P=a sin@ cosf.

Let two perpendicular directions of polarization be given by;

pA) = ’i;‘cosa sin‘r+’fycos 7+’fzsin9 sin?Y , (6.1.7
? A _ P
6(B) = L,c0s6 cos ¥ —iysm‘7+ 1,sinf cos? , (6.1.8)
z
z
/ A
/, /7 d
~ /
o b
~ 4
/‘\\\ < “ y
X Yy
A\ d ‘
X A :
v x ) ?
{
i
1
2 = Lainp 41
a = radius of loop = -isind +iyco:3¢
A A A
d = direction of dipole v = Zsing +1,cos0
¥ = direction of propagation T = a é‘,gosﬁ +’i‘ysinﬁ)

of incident plane wave

FIG. A-8: COORDINATE SYSTEMS FOR A WIRE LOOP

e
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where 77 is the angle between the pularization vector and the v-axis. Right- and

left-circular polarization dircctions can then be given respectively hy:

-"Y
PR = /l_ e [i‘x(i -:ose)+’?y+’i‘z(isine)] , {6.1.9)
y2 { i
H
iy ]
B = e [Aeti cosrs By -Tytising; | (€.1.10) !

2 L

.2 Cross Section Formulas

Formulas for the following effective cross sections have been determinea;

o(AA), o(BB), o7(AB), ¢(AR), «(BR), and o (RRj; in ¢{1J), 1 and J denote receiver

and transmitter polarization respectively. For example, using equations (6.1.6)

and (6.1.7), o{AA) is given by:

2
2 N
claa) = 2 I (cosP cos? ~ sinf siny cosg)® elika sing cosd a¢
T
0

2
= 1ra.2 l (sin ¥ coszt} + 0052‘7) JO {2ka sing)
2 2 2 12
+ (smn'y cos’6 - cos”Y) 3, {2ka siny) | s (6.2.1)

where Jn is the Bessel function of order n.

In a similar fashion the remaining formulas are found to be

(BB} = “2 (cosaa cos®Y - ainz‘r ) Jz {2ka s5ind)

2
+ (008’ cos 7 + 2in’Y ) 3, (xasmg) |, 6.2.2)

2
¢(AB) = ra® sin"y coa®| (1 +cos) 1, (2ka sin@) - sint Iy (2ka sine}| , (6.2.3)




s C U
RTTTIIIATITY
{

2 o
oc(AR) = —”f—- (i cos“d siny - cos7) JZ(Zka sing)

. 2

[ F + (i cos®g sin7 + cos 7) JO(Zk:x 8ind) , (6.2.4)
i 2
! 2
; o(BR) = EZ-"’I— (i cos 8 cos 7 + sin?Y) JZ(?.ka sing)
! ’ |2
i + (i cos®d cosY - sin?7) J,(2ka sing)) (6.2.5)
§

2 2 2
c(RR) = l:— (-cos @ - 1) Jz(Zka sing) + (-ccs%9 + 1) Jy(2ka singj| . (6.2.6)

«ori—————

Wemb———. v s
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PIHEDRAL SCATTERING g

o

7.1 Wing-Body Dihedral Scattering in the Dihedral Coordinate System |

Let the surfaces representing the wing and hody be such that for each

L KA ¢

surface one of the two principal radii of curvature is infinite and the other is
neither infinite nor zero. The scattered field is computed in this section for

the dihedral formed by the wing and body by Fock's formulation of geometric

optics (Ref. A-17),

Consider the conditions on a ray which is reflected back to the point
whence it came: Let % be the initial direction of the ray and let n,, and ny, be the
normals of the wing and bodyv, respectively, at the points where the ray hits
them. Suppose the ray hits the wing first. After hitting the wing the ray is
traveling in a direction

R-2R A1, ; (7.1.1)

after hitting the body the ray will be traveling in a direction
A A
k-804, -2 [k-z@.aw)?\,].ab R o= -k . (7.1.2)

The equality is required in order that the ray be reflected back to the source.
Since equation (7.1.2) may be rewritten as:

Reaof )@ B)R = k- A)0 +&-B)4h . (7.1.3)

it is apparent that {c\a a linear combination of ’r;'w and (‘.b, and thus lies in the
Plane of these two vecters. Further, the scalar product of equation (7.1.3) with
ﬁw and ﬁb respectively yields:
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(k- B)A, Ay =0 . (7.1.4)

Thus, ﬁw . ﬁb = 0. The same conclusions would have been reached if the ray
had hit the body first.

The above results allow a coordinate system to be chosen such that
{’\w =i\z and r’x\b =Ii\x(Fig. A-10). The ray is reflected from the xy-plane at
x = R’sin@, and from the yz-plane at z = R’cosf, where R’is the distance
between the two points from which the ray is reflected.

Since the geometric optics field depends only on local properties of the
scatterer, the wing and body surfaces may be replaced by parabolic cylinders

having the same radii of curvature. These are, for the wing and body, respectively,

(ycosf - x sinf + R’sind 81!\5)2

= -
z ,

2R,

x = - _lzcosa -y cosa - R’cosf cosa)? , (1.1.5)
. . 2R

where R, and R.b are the radii of curvature of the wing and the body.

Fock's formulation of geometric optics will be used. Since the pertinent
formuias are given in Section 3.1 of Reference A-17, the detail involved to
obtain reflected fields will be omitted.

Consider the case shown in Figure A-10 where the ray hits the wing
before it hits the body. (The reverse case can then be obtained from the

symmetries of the problem.) If the incident electric field ia taken to be
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Vg
| Q 2 = direction to radar = sin@ /i\x+ cosd fz :
s b = direction of body axis ;
| = cosa {+ sina 1, :
E ! # = direction of wing axis
' = cosf i‘x+ s8inf f'y
, 3 8 = measured in xz-plane
b g a = measured in yz-plane
o - B = measured in xy-plane
E | ¢
o
‘ z FIG. A-10: COORDINATE SYSTEM FOR WING-BODY DIHEDRAL
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R -ik(x 8in@ + z cos6)
E = [’i\ycosri-(-’i\ cos8 +1 sind) sin'r} e , (7.1.6)
i X z
the field reflected from the wing at the reflection point on the body is
(following the procedure of the above~-mentioned reference),
- _ A A A oIkR' cos’ 8
E = (sin?Y cosf 1~ cosY 1},+ sinY sinf i,) - . {7.1.7D)
142 R’ 1-sin“6 cos” B
- Ry, cosf
After reflection from the body the scattered field for large R is
R N G : A 7/-\ . 7 . A : /. 2

2 = YRW p 5in cosb {sin¥ cosfi,+ cos¥iy-sin ¥ sinf1i,) e1k(Rcos 8+R.) ,

2R, | cosa cosf cos - sina sinf sinel

where Ro is the distance from the reflector to the radar. Thus the scattered

field of wing-to-body plus body-to-wing is

A . ik(R'cos?o+
- V Rwa sin@ cos@ (sinY cose?x+ cosv i\y— sin? sinfi,)e ( Rol
E_ = .
8 R, |cosa cosf cosf - sina sinf8 sinf
(7.1.1)
If the polarization basis vectors are taken to be
A
Ba) =1,
A
6(13) = - coseg+ sing i, , (7.1.9)
then the scattering matrix S(AB; AB) is yiven by:
T 1 0
S(AB; AB) = € __ , (7.1.10)
Ro 0 -1

where
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V?WRb 5inf cos@
Q = s

Icosa cosfP cosf - sinx sinB sinO'

and u is a phase factor which is unimportant for the calculation of cross sections.
The form of equation (7.1.10) indicates that the incident wave has been re-

polarized (Sec. 4) by the wing~body dihedral.

7.2 Transformation to the Aircraft Coordinate System

In Figure A-10 let % be the direction to the radar, S be the direction of
the body axis, and # be the direction of the wing axis. The direction of incidence
is taken to be in the xz-plane so that 6 is measured in the xz-plane; a and 3 are
measured in the yz- and xy-planes, respectively.

Put A
= cosB'i\x-!- sinf iy s

AL A
cosa iy+ Sinx iZ »

sy o> E>
i

= sin0T,+ cos?, . (7.2.1)
As before, asterisks are used to denote the aircraft coordinate system.
The tie-up between the two coordinate systems is made through 1'3, %,

and % which can be expressed in both coordinate systems. In the aircraft

A
coordinats system b and 4\1 are constant vectors for a given aircraft while
£ = sing* cosp*Ty* + sing* sinpxT* + cosox izt . (1.2.2)

The expressions of equation (7.2.1) for Q, %, and T can be inverted to give
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E 4 — _sina sin@ w + cosfB cos@ b - sina cosf r
E A A
i ; y Q-bxf

A A
4 - 5inf cosa W + sinB sin@ b + cosa cosf r
2 A A
¥ bxf (7.2.3)

[l amp-ag o

where cosa cosf cos8 + sina sinf sinf has been replaced by w - 3 x . If the
expressions for Q, Q, and ? in terms of?x*, :r,’fz* are substituied into equa~-
tion (7.2.3), the vectors’fx, fy, a.nd'}zwill ke given in terms of ‘?x*, ?y*, and'.’i\z*
except that a, 8, and 6 are unknown, These angles can be determined from

= sinB cosyr = 8 ,
= sinrcosfd =t ,

u ; (7.2.4)

they are
2 . ¢2
cos 2q = 2-t?+D ,
1 -2
2 _ .2
- cos28 = % -8 *D

-

= sin@ cosfB

> T'D> €£>
£> "y OD>

1-¢

K - 2 .
] cos 27 £ -u'+D . (7.2.5)

:’ﬂ 1.6

2 2
where D2 =(1-8°- tz - uz) - (2 stu) . The sign of D must be chosen so as

to obtain the correct physical setup of the wing-body combinatien, a, B, and 8

are used not only in the expressions for ﬁ‘,'i\y.and fz, but also in the expression

for Q. U
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The transformation from the scattering matrix for the AB basis to that

-j ;
; for the HV basis i» accomplished by

Lt

S(HV; HV) = U(HV; AB) S(AB; AB) U'(HV; AB) , (7.2.6)

( agall

L e where

R B(H) - B(A)  Bm) - B
: U(HV; AB) =

: o . , (7.2.7)
3 BV) * DAY B(V) - f(B)
V )
since $(A) and ﬁ(B) are real. Here, !
A . A A
P(E) = -sinf*1* +cospr ip* ,
: A
- BV) = - coso¥ cosf * Al\x* - cos@ ¥ sin¢*fv* +sinf* 1,* . (7.2.8)
e
- The only unknowns remaining in the determination of S(HV; HV) are
¢ Rw and Rb From Figure A-10 the normals to the wing and body at the
) reflection point are:
ﬁw =i, , 75
~ 8 =1
Y lb x ? :
° . . A Dy A o ;
' which are known in terms of ix*, ly , and 12*. From the direction of the normal :g
at the reflection point the radius of curvature can be determined from the formula ;
a® b
radius of curvature = — 3z . (7.2.9)
[(aa * M2+ (b8 ﬁ)’]
: where a and b are the semi-major and semi-minor ellipse axes and 9( and M
; ‘ are unit vectors along these axes, respectively,
%
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CROSS-POLARIZATION CROSS SECTIONS FOR CYLINDERS

. —— -

In this section the limitations on the use of the physical optics current

distribution method are ccnsidered. That such limitations exist is evident {rom

- —— - o

the fact that there is no repolarization of incident radiation in monostatic single
| reflection situations according to physical optics. However, this is not an es~
! sential limitation in computing the cross sections for various aircraft

components,

For example, consider the scattering from the wing-fusclage combination

illuctrated in Figure A-11,

_.%,_\?——
v 5 & () & 85T
% Direction of Incidence

FIG. A-11: WING-BODY DIHEDRAL
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j %}_ For broadside aspects the wing-fuselage combination was treated as a
: dihedral which gives rise to double scattering (Sec. 7). Moreover, the single-
1 :; ‘ scattering contributions, principally from the fuselage, have been included.
In the case of circularly polarized radiation, an analysis in terms of
the characteristic dimensions of the wing and fuselage for the aspects con-
sidered indicates that for double scattering the dominant components will be
¥ o(RR) and ¢(LL), while for single scattering the dominant components are

o(RL) and ¢(LR). That is, the characteristic dimensions are such as to insure
the validity of the physical optics approximation. It is then possible to set up

the following rule of thumb for the application of the physic:l optics approxima-

i
!
i
{
i
'
!

tion in deteraining the scattering properties of a target for circularly polarized
radiation:
1. The double-scattering contribution to ¢ (RR) must be much
greater than that of single scattering to #(RR); i.e., the
repolarization effect of the single scattering ie small with

respect tc the double scattering.

2, The single-scattering contributior to ¢ (RL) must be much
greater than that of double scattering to o(RL).

On the other hand, viewing, for example, the leading edge of the wing
there may be a measurable contribution to ¢ (RR) arising principally from a

single-scattering repolarization effect. Although in this case the physical optics

approximation may give a sufficiently accurate measure of o (HH) and o (VV}, it

can give no indication of the contribution tc ¢ (RR). To take into account such

~

gy

cases the polarization-dependent current-distribution method of V. A. Fock
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(Ref. A-9) is intreduced. It is, in effect, a modification of the physical optics
method and can best be illustrated by a comaarison with physical optics.

In the physical optics approximation, the tangential component of the
magnetic field on the surface is taken to be twice the tangential component of
tiie incident field on the illuminated side and zero on the shadow side of the
scatterers. Thus, the tangentiai component of the incident magnetic field can

be written:

— u°
Ht Ht G(g) , (8.1)

where G(£) is a funclion of a certain reduced distance from the shadow boundary;
K is positive on the shadow side, negative on the illuminated sid= of the scatterer.
Hence, for the physical optics approximation

GE) =2 for§ <0,

= 0 for £ >0 . (8.2)
By considering the local fields on the shadow boundary, Fock had
obtained a continuous function G(§) such that

GE®)—»0
‘—-’4-&

GR)——»2

-

. (8.3)

Fock's value for the field on the surfrce becomes the first approximation of the
method of Frarn:. and Depperman (Refs. A-12 and A-13) applied to the circular
cylinder or sphere.

The details of Fock's method applied to the particulax; surface chosen

to approximate the wing surface are given below,
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., Consider a finite cylinder whose cross section is made up of one-half

an ellipse and one-half an ogive. Let the major and minor semi-axes of the
ellipse be designated by a and b respectively. Let the ogive have radius of
curvature R = a?/b, and a semi-minor axis b.

Attach the half ogive at the point of maximum radius of curvature of
the ellipse; i.e., at the minor axis. The cross-section is then a smooth curve
having an elliptic "nose'' and an ogival '"tail". Let the length of the cylinder be L.

Under the assumption that plane radiation is incident at or near 'nose-on'';
i.e., the direction of propagation 'l:. is in the XY ~-plane making a small angle o
with the negative X-axis, the cross section is computed using a current distribu-
tion method as follows:

After Fock (Ref, A-9) it is assumed that the charucteristic dimensions
of the cylinder are sufficiently large with respect to the wavelength of the incident
radiation that the current on the surface is given by the geometrical optics cur-
rent modified by a shape factor which is a universal function of a certain reduced
distance from the shadow boundary. It is further assumed that the cylinder is
of sufficient length L that edge effects may be neglected and that the same current
distribution can be used along the entire length of the cylinder.

In general the magnetic field scattered from a finite perfectly conducting

closed surface is given by the expression (Ref. A-1),

ikR

H =1 AxH e s , 8.4
H8 ™ fs(nxﬂt)xv - (8.4)
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where § is the surface of the cylinder, f 15 the unit outward normal vector to

S, R is the distarce from the integration element on S to the field point, and -ﬁt
is the tangential component of the total magnetic ficld on the surface. In

particular, for the backscattered fur field,

e . A :
i o= -k kx (R xi) B ds, (8.5)
s dar g

? where r is the distance frcem the field point to the center of the scatterer and
ﬁ is a unit vector in the direction of propagation of the incident plane wave,
For the scatterer under consideration put the origin of coordinates on
the upper shadow boundary midway between the ends of the cylinder. Let the
X-axis be in the direction of the incoming radiation, the Z-axis perpendicular
to the cylinder surface and the Y-axis in the direction of the cylinder axis
(Fig. A-12).
First consider the case of incidence along the X-axis and the electric

vector polarized perpendicular to the cylinder axis (Fig. A-13).

In this case
H = (0, H, 0 ; (8.6)
hence,
A —
k x (i x H) = (0, n H, 0), and (8.7
ik ikkr k-1
e R e e T . (8.8)
where,
=R, (8.9)
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FIG. A-12: ORIENTATION OF COORDINATE .A\XES
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FIG. A-13: DEFINITION OF¥ PARAMETERS

208




PL

B

1

-

g I3 s W . e e et

80 that

ikr ik-
g = kX . f n He ds . (8.10)
S P X 7t
<7 r s

After Fock (Ref. A-9), write

C
H = H G(E) , (8.11)

o ik-R
where Ht = elﬁ R The function G(§) is determined numerically and tabulated

for € = ~4.5 (0.1) 4.5 by Fock (Ref. A-9).
The integration over the y direction o: the integrz! gives simply
2ikr -
i 2ik - ¥
H = XL e j n e GE) df , (8.12)

8 4" r

where d£ is the element of path around the cross section of the cylinder, To
facilitate the computztion divide the integral into two parts, that over the ellipse,
and that over the ogive. Let these parts be designated by Ie and I o for the
integration over the ellipse and ogive respectively, Because of the symmetry

of the nose-on case, only the integral over 1/2 the cross section, from nose to

tail need be calculated. Thus,

KL 2ikr
= ML e
Hy = =50 5 L,+21) (8.13)
where
zik. T
I, = n e G(%)d.L . (8.14)
o !-g
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E Now
I B
o n df = -bx dx on £ , and (8.15)
E- A X 32 X e
FoF g5 - X
E . 5‘" 1 a2
RN
> 1/3
1 2
- E = _kl)__> X ; (8.16)
-1 2a a

hence,

!
|
s i 2/3
| 0 i<—‘3%‘i) 3 2\ 1/3
a3 1 = f £df§ G(3) f-*é_> .
N K b

g 3 3
N _ kb’ 1/ ‘
‘ 2a
¥ (8.17)
a2
while n_ al = =, 20s0.d8 on Lo and § is given above; hence

2,1/3 a2/ 2

; xé_az_>1/3j(§g> £a% iT) EG(!).
o

A bk2
3 0 ( ; ) g 2
: ka (8.18)

. The cross section is then given by:
&
3 i ¢ = 4x ( ) I+ I .
’ 2 (8.19)
= ksz
:f' g N = T Ie + IO
o ¥ 210
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For incidence at some angle a to the X-axis, the same current distribution

technique is applicable provided:

1. The radius of curvature, R,, at the shadow boundary

remains sufficiently large,

2. The minimum distance from the shadow boundary to the
"tail" is large enough for the shape factors to assume the

asymptotic value, zero.

It is required that the radius of curvature at A be much larger than a

wavelength and that the reduced distance from the shadow curve at B to the tail

C be so great as to be in the 2symptotic range of the function G(§).

Y
Y !
/
{
—~
! D
!
a ! B
L=l X
C—X
A 1e
I' E X
!
z /
/
{
/
Y"

FIG. A-14: COORDINATE AXES FOR INCIDENCE AT ANGLES «
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As before erect the coordinate axis with the shadow boundary as the

crigin. Since there is no longer the symmetry of the 'nose-on'’ case, it is

nececsary to divide the surface into two parts and determine the contributions

from the two sides of the specular reflection point separately, With this in

mind two coordinate systems as indicated are used and the procedure is the

same as hefore,

In the czse of parallel polarization, after Fock (Ref. A-9), make the

approximation that on the surface

H =0 ,
Z
: 0
H = L1H
X m Z
where

21/3 kR 1/3

(2" - ()

zb 2

.3

% i§t
Fg = L. e j =
a3 c ¥

R
w(t) = — I e dz .

C

e

?

ikx
F(§) ,

(8.20)

(8.21)

(8.22)

Asymptotically for large negative § , F{¥) is evaluated by the method of

stationary phase; thus,

|F(!)[ & 2

212

= -gr e P T

(8.23)

© e TR oo x g o Mt s T Tt h e S T A AR W IR Ry me g =

el prpdt b e

RN oo, ek RN 7



wr
ol

T e e = 4 o e
>

which gives the geometrical optic field
ikx ikx
H =2e H 2=z X. (8.24)
X Z a Z

For positive § , the function F(§) may be evaluated by closing the contour C

and obtaining the sum of residues,

F(§) = 2rmi _)_ L, (8.25)

where the t_ are the zeros of w(t).

The zeros of w(t) are given by Fock (Ref. A-9) and by Franz (Ref. A-13).
The values of w'(ts) are given by Franz in the form of those of a related function.
The function F(§) must be evaluated by quadratures for £ <0 and as is in-
dicated above, may be evaluated by the method of stationary phase for § << -1.
The function F(§) has been computed and appears in Tables A~1 and A-2.

By an analysis analogous to the above the scattered magnetic field is

found to be in the Z direction, and is given by

. ikr ik - ";i
g =k e j‘n H e ds . (8.26)
8 47 r 5 zZ X

Subsituting for Hx‘

H, = (.}:_:_) (':T) eﬂ:r Is ezmx n, FE) ds , (8.27)

where n, = ¥1 - uxi and 1'\x is given above.

213




TABLE A-1: VALUES OF F(§), 0(0.1) 2.1
Re [F(§)] im [F(¢]
g Numerical Integration Residues Numerical Integration  Residues
. 0 0.38791 -0.67188
‘. 1 0.38569 ~0.56098
L .2 0.37880 0.45779
- 3 0.36699 -0.36257
p. 1 4 0.35013 0.34876 -0,27557 -0, 27526
E 5 0.32825 0.32747 -0.19712 -0,19747
: “l .6 6.30153 0.30120 -0.12754 -0.12793
o | 7 0.27040 0.27027 -0.06721 -0.06291
it 8 0.23547 0.23550 -0.01648 -0.01665
b 9 0.19762 0.19768 +0.02432 +0.02432
4 1.0 0.15799 0.15777 0.05496 0.05480
£ 1.1 0.11797 0.11793 0.07539 0.07526
¢ 1.2 0.07918 0.07920 0.08582 0. 08575
" 1.3 0.04341 0.04343 0.08683 0.0868!
P 1.4 0.01247 0.01249 0.07951 0.07950
! 1.5 -0.01193 0.06546
E | 1.6 -0.02852 ‘ 0. 04689
1.7 ~0.03660 0.02651
l 1.8 -0.03644 0.00722
1.9 -0.02937 -0.00815
2.0 -0.01785 0.01748
2.1 -0.00512 -0.01986
2.2
3 ! 2.3
1! 2.4
E 2.5
f 1 2.6
3 ; 2.7
! 214
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Numerical Integration Asy> ntotic

0. 38791
0. 38582
0.37987
0. 37052
0.35838
0. 34392
0.32771
0.31027
0.29209
0.27355
0.25509
0.23697
0.21948
0.20285
0.18718

Re [F(8)]

0.15972
0.16306
0.15162
0.13924
0.12599
0.11340
0.10205
0. 09207
0.08336
0.07576
0.06912
0.06328
0.05810
0.05352
0.04942
0.04575
0.04245
0. 03947

TABLE A-2: VALUES OF F(E), -2.7(0.1)0

Im [F(§)]
Numerical Integration

-0.67188
-0,79024
-0.91585
-1.04845
-1.18775
-1.33347
-1,48526
-1.04275
-1.80557
-1,97328
-2.14544
-2.32164
-2.50144
-2.68455
-2.87050

Asymptotic

-2.13348
-2.30150
-2.47517
-2.65543
-2.84129
-3.03128
~3.22414
-3.41898
-3.61514
-3.81216
~4,00998
-4,20819
-4,40675
-4,60557
4. 80461
-5.00388
<5,20322
-5,40270
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’ : APPENDIX B
L % FAR FIELD SCATTERING FROM BODIES OF REVOLUTION
B SUMMARY

2

By use of approximations based on physical reasoning, radar cross section

results for bodies of revolution are found, In the Rayleigh region (wavelength large in re-
spect to the object's dimensions) approximate solutions are found. Examples given
include a finite cone, a lens, =lliptic ogive, a spindle and a finite cylinder, In the
physical optics region (wavelength very small in respect to all radii of curvature)
Kirchhoff theory and also geometric optics can be used, When the body dimensions
are only moderately large in respect to the wavelength then Fock or Franz theory
can be applied and examples of the circular and elliptic cylinder are presented. In
the region where some dimensions of the body are large in respect to the wavelength
and other dimensions are small in respect to the wavelength, special techniques are
used, One example, the finite cone, is solved hy appropriate use of the wedge-like
fields locally at the base, Another example i8 the use of traveling wave theory for
obtaining approximate solutions for the prolate spheroid and the ogive. Other results
are obtained for cones the base perimeter of which is of the order of a wavelength by

using known results for rings of the same perimeter,

* Applied Sci, Res,, Sect. B,, Vol, 7, 293-328 (1958). (Errata have been corrected
and slight revisions have been made,)
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INTRODUCTION

It is the intent in this appendix to use different mathematical techniques
to obtain approximate results for the far zone scattering of plane electromagnetic
waves by perfectly conduciing bodies of revolution for all ratios of body dimension
to wavelength, In places speculation based on physical reasoning has replaced
mathematical rigor. We shall first discuss the Rayleigh region, then the physical

optics region, and then the resonance region.

218

A bubir®



Pl

RAYLEIGH CROSS SECTION OF BODIES OF REVOLUTION

Rayleigh scattering (Ref, B-1) describes the scattering of electromagnetic

radiation by a body whose dimensions are much smaller than the wavelength of the
radiation, Thus the Rayleigh limit describes the scattered field, due to an incident
plane wave, approximated at a large distance from the body by the field of radiating
electric and magnetic dipoles locuted at the scatterer (the magnetic dipole contri-
bution is conmparable to that of the electric dipole only for a perfect conductor),

To evaluate the electric (magnetic) dipole moment, the static electric (magnetic)

field induced on the body by an applied constant iield must be known, In other words,

the electrodynamic boundary-value problem has been reduced to a corresponding
static problem,

Although the solution of the Laplace equation is in principle simpler than
the solution of the Maxwell equations, there are very few geomerrical cases for
which even the former is manageable. The question, therefore, arises whether
any approximate information can be obtained as to the Rayleigh cross section when
a solution of the Laplace equation is not available, That this should be possible is
heuristically plausible, When the wavelength is much longer ‘han the dimensions
of a boay, one cannot discern details of the structure of the body - the observed
effect depends more on the size of the body than on its shape, Thus, knowledge of
the size of the body modified by a rough indication of shape, should suffice for a
description of the bedy in finding the Rayleigh cross section, It is the purpose of

the present discussion to explore this possibility,
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As background, it might be helpful to bear in mind a couple of features of
the Rayleigh approximation itself, The solution to an electromagnetic scatiering
problem can be expressed as a multipole expansion, The relative importance of
terms in the expansion differs according to the distance of the observer from the
scatterer (as well as on the dimensions of the body relative (o the wavelength), so
that a small error in describing the field in one region can result in compietely
misrepresenting the corresponding field elsewhere. For a scatterer much smailer
than the wavelength, retaining only the dipole terms gives a good approximation
to the far zone, though the field in the near zone may be entirely wrong, Specifying
the dipole moments of the body does not determine the body uniquely (i, e, different
bodies may have the same dipole moments), Thus the Rayleigh cross section alone
cannot identify the body fully. On the other hand, the finer details of the structure
of the body, which would be exhibited by the higher momeats (and seriously affect
the cross section at small wavelengths), do not affect the Rayleiga cross section,

For simplicity, consider the scatterer to be a body of revolution, make it
a perfect conductor (this is a rather trivial limitation), and examine backscattering
of a plane wave incident along the axis of symmetry., There is then no polarization
dependence, Thus, the direction of incidence will be dencted by z, the incident
electric vector direction by x, the incident magnetic vector direction by y, and the
length of the body along the symmetry axis by 4. The electric dipole moment P

is given by
p- S w #ias (3.1)

S
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where w is the charge density, S the surface of the body, and T ' the vector,

- to a point on the surface. The boundary condition yields
]
w= eB*f = ¢E (8. 2)
3 where € = dielectric constant, 6= outward normal to the surface, and B-
4 electric ficld strength, Using cylindrical coordirates,

iy ! 45 = /1 Hdp/dz)® df dz (3.3)

where p is a function of z but not of ¢ so ot

’.( > 2r
e apV 1+(§Jz°—) S dpE T (3.4)
0 0
‘ From uniqueness and symmetry considerations, we can write
: ©
o E- E a (2) cos nf . (3.5)
} n=0
3
“:. Then Py = 0, p,=0, and
g e 2x @
2 2
< px=es dz ¢ ,Il.,,(%zl’) j dag cos¢<Za(z)cosn¢>
s 0 0 =0

(3.6)

F4 Y
=cs xdzp’al(z)\, 14»(%2‘?)z =€ | rdz a2
0

o (._—-5)\

Apart from the factor a'l(z), the integral is just the volume of the body, V, In
fact, the whole determination of the electric dipoie moment resolves itaelf into
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the determination of the factor a(z) in

E = a(z) cos § (3. ;7)
since the other terms in the series do not contribute, If the body is elongated
along the axis of symmetry (L, e,, if A > p), a'l(z) will be a slowly varying
function of z and can be removed from tae integral and replaced by a mean value
(or actually by an estimate of its value), To estimate a(z), we resort to an analogy
with reflection from a plane, In the latter case, the amplitude of the total field is
twice that of the incident field. Thus we choose a = ZE0 (phase differences in the

incident field at various points on the body can be neglected) to obtain

P=%X2€E, V. (3.8)
The fur zone electric field at a point on the z-axis due to the electric dipole is

i(kz-wt)
e

£-- 2 fxdxd —. (3.9)

The form of the magnetic dipole far-zone field is the same as that for the
electric dipole if the electric and magnetic fields are interchanged (Ref, B-2), The
symmetry of the problem insures that the magnetic dipole is along the y-axis, just
as the electric dipole ie along the x-axis, Consequently, the far-zone fields due to
the two dipoles have the same orientation and phase, If we again resort to a cylinder~
like mcdel for approximation (with the smplitude of the total field st the surface
twice that of the incident field), it is obvious from the complete symmetry of
cccurrence of the electric and magnetic {uteractions that the two contributions are
equal,
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Altogether, we have in the far zone un the z-axis |

§ . i(kz -wt)
3 - .3 - e
4 ‘ r._'“: E= Q __k2_ Eo vV —". (3. 10)
oy A 4 z
F = & The back-scattering cross section is given by
!. - — 2 4
% c=d7 2z | o =4 VZ. (3.11)

7
lim z+00 °

This, then, is the value of the cross section to be expected for an elongated
*
body of revolution, As the flatness of the scatterer increases, the approximation

is expected to get worse, in fact an infinitely flat body (i,e, a disc) has zero volume

d but a non-zero cross section, To anticipate the discussion below, for prolate
spheroids the error incurred in the cross section varies from zero for extreme
elongation to 13 per cent for the sphere,

Let us now compare this pseudo-derivation in detail with the exact answer
i for the special case we do know, the spheroid (Ref. B-l,) L.t us define for
%
) convenience the quantity
7 T2z l El
E F= = . (3.12)
EV
b K o
F = 1 yields the magnitude of E given by Equation (3-10), Modifying Rayleigh's
, 3 notation slightly,
2R e ;(1+L)= _1 3.13)
28 Tz \L 2Ll 1e-n)
where for a prolate spheroid, (Ref, B-1),
* - 1-€?
N Lo — - Ln 2 3. 141
) ez 2 e3 l1-e

)
It should be noted that for the acoustic case the treatment would be equivalent except

that instead of the two components (electric anwagnetic) there would be only one,
and thus the cross section would be o= (1/x) k V°,
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& __ , For an elongated

V1-e?
spheroifd (e — 1) , L =* 1 and F — 1, checking the approximation,

where e = eccentricity -- i,e, the semi-axes are a, a,

Next, let us inquire into the shape correction by first examining its form

for the spheroid, We already know the prolate result; for i.ie oblate spheroid,

y‘l—ez -1 1-e?
L= ——-3— sin e~ “‘e‘z'—‘ (Ref, B-1) (3.15)
€

where the semi-axes are now a, g, av1-e?, As these expressions are quite
complicated, it is profitable to examine their limiting values.  Consider a sphere

(e=0); From (3,14)

3
log(—?i) =2 <e+ % e +....) (3.16)
L= ;1'2'[1'(1'92) (1+-% e?+.... )]
(3.17)
2
3

= -L[l-l'(ez'}; e2 +.--o] —y
e 3

-1
-1
2, 2 2 4 =9, (3.18)
F=[§ 0”3’] “[3 '3] B
It is easily demonstrated that F i8 monotone decreasing as we progress from
a sphere to an elongated prolate spheroid. Hence, it ranges from 9/8 to 1 -~ very

nearly constant, of the form 1 + decaying term,

Examine the disc limit (e —» 1 for oblate spheroid); Let

e=sinx, (3.19)
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Then
2
L = cos x csc x (x csc X - coB X), (3. 20)
Let
y=s I - X, (3.21)
2
Then 2
L = «iny sec y[(lfz. -y)secy—sinyJ. (3.22)
Expand near y = 0 (equivalent to e -—— 1);
s Syt Iya-dy) (3.23)
Lay (E"Y)'.] =1".§. y = gyl-7 .
F=—i- = - =L wivin e
- 2 -
L(2-L) %y(l- - y)2 3 y)

For smally, y zﬁ; if we call the semi-axes a, a, b, theny &2 b/a,

Combine the information about F, In the oblate case, F is again monotone,
increasing toward the disc limit, The prolate spheroid discussion indicates that
we should split off from F a unity term, and that the remaining term should decay
as b/a —» . Thus we write

L0t N e & a1+ 27 (3.25)
Fow 1+ 7o [14-(, + 4-1)%~1+ ry (1-y) v

We now postulate that for all spheroids (with semi-axes a, a, b), the shape correc-

tion factor is approximately

Fe1+4 + &7 (3.25)
y
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whare y = b/a, Numerical comparigon indicates that the approximation is valid
to within one per cent, The Rayleigh cross section of a spheroid for backscatiering

along the axie of symmetry is

2
4 40 Loy, (3. 26)
o= ;r- k'V [1+ Ty e ]

The cross section of the spheroid depends on its volume and on a correction
factor involving y = b/a, Except for very flat oblate spheroids, the shape correc-
tion factor can be neglected. Where it is not neglected, the shape correction
factor is a simple function of y, which is a measure of the elongation,

The natural extension of the discussion is to postulate that for all bodies
of revolution the Rayleigh cross section for backscattering along the axis of symmetry

can be expressed as

SRS

42 2
K Ve(l +;y1— ey (3. 26)

where y is a measure of the elongation (characteristic dimension along the axis of
symmetry)/(characteristic dimension in the perpendicular direction), For elongated
bodies, the term in y drops out and there is no ambiguity, For flattened bodies, the
answer is sensitive to the choice of characteristic dimensions, but a good approxi-
mation should still be attainable, The ambiguity can be eliminated in a number of
cases by imposing a restriction on the choice of characteristic dimersions: in the
limit of extreme flattening, the cross section must tend to the value for the approp-

riate disc,
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Nllustration I: Finite Cone

Consider a right circular cone of altitude h and radius of basea. As
h — 0, the cross section of the cone must go into the cross section of a disc of

radius r ~- i,e,, we must have

2
1 1 ah 4 3
VF = '§7razh(1+1—ry—e-y)"’ 3y =3 2- (3.27)

Thus, the appropriate ratio of characteristic dimensions to be used in equation

(3. 26) is
y=h/da. (3. 28)

Hence, the cone has the same cross section as a spheroid of equal volume whose
semi-axes are (a, a, h/4),

Nlustration O: lens

Consider a symmetrical convex lens of radius of curvature R 1(t.he body of
revolution obtained by rotating the shaded area in Figure B-1 about the n -axis),

In the disc limit (d constant, ¢ — 0),

VF_.—V. = %— d . (3029)
ny
Hence, we take for the lens
. 3V . 3V . (3. 30)
Vi ad 4R am’e
The volume of the lens is
2r 3 2
V= "3 R;(1- cos 6)(1—cos 6 + sin 6), (3.31)
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As 6 — 7/2 (sphere limit), we reproduce the previous spheroid result,

as expected,

FIG. B-l: THE LENS

Dlustration Il; Elliptic Ogive

Inasmuch as the circular ogive is more elongated than a sphere, the
argument from the disc limit cannot be applied to it directly,

Instead, we consider the elliptic ogive obtained by rotating the shaded area
of Figure B~2 (a portion of an ellipse) abou! the n -axis (which is taken psarallel

to the minor axis), For this body, in the disc limit (d constant, ¢ — 0):

3
N .44 3, 32)
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FIG. B-2; THE ELLIPTIC OGIVE
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The equation for the ellipse is

24 df o, (3. 33)
a® b?

which suggests use of the parameter 6,

sin 6=c/a (3.34)
Then

3v _ 3V (3. 35)
. . y= 3 " 3
| 4rd arb (1-cos §)°

The volume of the elliptic ogive is

2
V=2rab (sin 6 -6 cos 6 - 31-81!13 6). (3. 36)

L]

As 6 —» 7/2, we reproduce the previous spheroid result, as expected. ¢

Special Case: Circular Ogive , To obtain the cross section of the circular

e m e et el e . e -

ogive, we now merely take the special case of the elliptic ogive with a = b, From

geometry, 6 can then be identified with the ogive half-angle, Now

!
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i 3 8in@-6cos 6~ Fsin 6

{ y= 2 q (3.37)

! (1 - cos 6) .

[

]

| Tlustration IV: Spindle

i

| Consider the body of revolution obtained by rotating the shaded area of
Figure B-3 (bounded by a parabola and a straight line perpendicular to the axis

} of the parabola) about the n -axis, Using the disc limit just as before, we have

= ——r 3,.38)

y 4nxd ¢
where the volume is

U (3.39)

15 *

so that

R S 3.40)

Y= 5 d (

FIG, B-3; THE SPINDLE
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Hlustration V: Finite Cylinder

Consider a cylinder of radius a and height h., From the disc limit,

y = = (3.41)

By further explecitation of this approach we can go on to obtain the
Rayleigh cross section of a body of revolution for arbitrary separation
between transmitter and receiver and for all aspects and all polarizations.
The most direct extension is to replace the body by an equivalent spheroid
and té.ke over the spneroid results. The equivalent spheroid is a spheroid
with the same volume and the same elongation factor as the body. The
simplifiec expression found for backscattering along the symmetry axis
provides a reasonable way to arrive at an elongation facior for many bodies.
The logical ultimate extension in the spirit of this approach is to formulate
the Rayleigh scattering of a body of revolution at all aspect combinations
and polarizations in terms of the following parameters only: the volume,

the elongation factor, and the aspect and polarization angles.
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THAE OPTICS REGION

By the optics region we mean, generally, that region, in wavelength,
wherein the techniques of geometric and physical optics yield good approxima-
tions to the radar cross section of a body. The extent of the optics region
thus depends on the particular body being studied. By the geometric optics

cross section we mean 7 Rl R, where R1 and R2 are the principal radii of

2

curvature of the body at the point where a ray is reflected toward the receiver.

We use physical optics (Kirchhoff) theory to denote the scattered far field, and

the cross section thus defined, given by the following expression

ikR
(ﬁxﬁ)xven ds

ﬁs = (1/4x) S

{lluminated
area

where H = twice the tangential component of the incident magnetic field,
R = the distance from the integration point to the field point,
f = the unit outward normal to the surface at the integration point,
and in which the far field approximations for V —3?-:1— are used. That

is, with the receiver at a very great distance from the body and if the body

() -+ (M

where R =r + (_« T), r = the distance from the origin to the field point
o

is finite we have
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(receiver), r’= the distance from the origin to the integration point on the

scatterer (F/= the s orresponding vector) and 60 = the unit vector directed
from the receiver to the origin,

When the wavelength is small with respect to all of the dimensions
of the scatterer, the geometric optics cross section is an excellent approxima-
tion to the exact result. When a body is infinite in extent, then geometric
optics can be the exact solution. Examples of such exact solutions are the
paraboloid of revolution, when we are considering plane wave illumination along
the axis of symmetry, and the wedge for particular wedge angles and for
particular angles of incidence and polarization.

Let us now consider a body which has one radius of curvature which
is small with respect to the wavelength. In three dimensions we can con-
sider the infinite cone and in two dimensions we can consider the wedge.
By purely dimensional analysis we {ind tkat the tip far field behaves like
1/k and the edge in two dimensions behaves like (ll'k)l/ 2. We find that
pbysical optics not only predicts thesc typss of k-dependence but also (for
large and small cone angles) that it predicts the leading term of a rapidly
convergent expansion in the angle parameter as long as the transmitter or
receiver is on the axis of symmetry.

Kirchhoff theory will give poor results for problems in which the
major contribution to the cross section comes from an edge. For example,

consider the case in which the transmitter and receiver are located at a
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point along the foce of a wedge but far from the edge, with Poynting's vector,
1—;, parallel to the face of the wedge and normal to the edge (see Fig. B-4).

For the E-vector perpendicular to the surface, the exact result is:

2
o =21lf(ﬂ)l2=—'—2‘— tan® X
2 2 2,

where the cross section, in two dimensions, is given by

2
E
o =lim 2xr —P

while the Kirchhoff unswer is zero.

i'm

FIG. B-4: THE WEDGE FOR INCIDENCE ALONG ONE FACE OF THE
WEDGE AND NORMAL TO THE EDGE

This leads one to the realization of why Kirchhoff theory would give poor

results for a finite thin cone. The major contribution to the cross section
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in the non-specular directions for small wavelengths comes from the rear
circular edge. The field, locally, would be like that for a wedge. Thus,

we need to use an improvement or Kirchhoff theory to obtain good cone
answers. We will show this improvement and also how we obtain approximate
results for thin cones in the resonance region. Thus we will show how to
obtain, approximately, a complete cone cross section curve.

Kirchhoff theory gives excellent first order approximations for bodies
with dimensions large with respect ‘o the wavelength and the results are
too well known to warrant their discussion here.

In the region to which we must give the vague characterization as
lying somewhere between the resonacne region and the optics region there
has been a rapid and fruitful development of new ideas recently.

We begin with the remarkable paper of V. A, Fcck (Ref. B-3) in
which he presented a method which we will describe as a local order analysis
cf the field near the shadow boundary. He succeeds in giving the fields on the
diffracting surface near the shadow boundary in terms of one or the other of
two "universal" functions according as the incident polarization direction lies
parallel or perpendicular to the shadow curve. Strictly, these are solutions
of the two dimensional (scalar) problems and depend on the radius of curvature

at the shadow boundary and the wavelength of the radiation. These functions are

of the form § igt '
g(¢) . £ &
\[I'— r U‘(t) (4‘1)
igt
£(g) = —— S e dt
Jr row
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3
d 1 A g 7t - &~ z dz
A wi) =2~ | e 3 (4.2)
? J n I“ '
i
t
with the contours shown in Figure B-5.
!
: i
!
.'f t-plane
. ? r z-plane
b — S
i 1
. r

FIG. B-5: CONTOURS

; S
i Diffracting Surface

FiG. B-6: GEOMETRY

The arguments used are certain reduced distances measured from the
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geometrical shadow boundary, i.e., near the origin as indicated in Figure

3
&1
E.’ R B-6 we have
<3 3 -
< 3 X
ik ¢ - [J&&] = (4.3)
- 3 o L 2
Ny
215 where R is the radius of curvature and k = -2;:!- .
- X "4
i3 These same functions appear in the approximate solutions of specific
* problems. There are two which we particularly wish to note. The fields

induced on a parabolic cylinder (Ref. B-4) and on a circular cylinder (Ref.
B-5) are given, in a sense, by these same functions. These are not

remarkably similar surfaces.

¥ In these examples for the solution continued into the shadow we must
modify the arguments of the universal functions as follows. The motivation
for ‘this stems from the "generalized ray optics" of Keller (Ref. B-6). In
; place of Equation (4.3) we write
. S 1
kR (s 3
e- | [___“} 3 s (4.4)
0 2 R(s)
 5 where S is path length measured along the surface of the obstacle from the
1 ghadow boundary into the shadow, ds is the element of path length, and R (s)
4
‘.j,.‘;;" is the radius of curvature at the position s.
& ': ¥ Franz and Deppermann (Ref. B-7), however, have given the connection
E: g between the two io the concept of "creeping waves". We can meaningfully
§ e 238
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speak of the continuation of the penumbra solution into the shadow of the
parabolic cylinder, but in the case of the circular cylinder we find we are
wrapping our solution around the cylinder if we allow tl.xe argument of the
universal functions t¢ continue increasing. This latter concept is made
meaningful if we understand the field in the shadow as arising from waves
"launched" at the shadow boundary and "creeping" around the rear and
eventually back to the front, etc. The physical interpretation has been
justified by Friedlander (Ref. B-8) while the underlying mathematical
structure has been illuminated by Wu (Ref. B-9) with his concept of a
universal covering space.

In the following is given an account of the general procedure. Let
a convex closed surface S, f(x,y, z) = 0 be illuminated by a plane wave
incident in the direction of the x-axis. The geometrical shadow is then
given by the two equations f(x,y,z) = 0, -5&5; = 0. Let the origin be
located at a point on the shadow boundary with the z-axis the outward
directed normal to S and the y-axis chosen to form a right-handed system.
Using the geometric as:umption that the surface can be approximated by a

paraboloid at any point, i.e.,
2 2
z+1/2 (ax® + 2bxy + cy ) =0, (4.5)

8o that —:—;f:— = ax + hy, and the pkysical assumption that the varistion of thie

field in the z-direction is n.'ch larger than that in either the x- or y- direc-

SR e b

tion for sufficiently small A, Fock obtains an approximation to Maxwell's
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o ;A equations which leads to the solutions:

o
H =H G(g)
y y
22 1/3 o ikx
] ' .3 Hx= (—l:—) 1HZe F(¢) (4.6)
x‘ L3 "
H =0
: z
" ; H on the surface. The incident field is given by
2N .
T H =(o, v, H°) (4.7
¢ o y Tz
A
. while the functions G and F have the asymptotic behavior
R 2
- lim  G(%) {
E {—> T © 0
| 3 * (4.8)
| 2¢
B ' lim F(Y¢) = {
g (.,;a)

0

where ¢ is a reduced distance from che shadow boundary given by

1/3

E= (£ ) (ax+by) (4.9)
2a

In Figure B-7 we compare the result using the Fock-Franz method
with the sum of the harmonic series for a circular cylinder (e.g., Bailin's
work in Reference 10) with ka = 12, In Figure B-8 we compare the method
with the experimental measurements of Wetzel and Brick (Ref. B-11) on an

elliptic cylinder of ka =12 and kb = 7.5,
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In the case of the three-dimensional problem of scattering by finite
obstacles we have an additional complication which appears in both the

scalar and vector probiems. Since there is a caustic at the rear of the obstacle,
we must take account of the fact that the energy converges on the caustic and,

in fact, the "creeping waves" lose their identity in this region.

This behavior is apparent from the work of Fock (Ref. B-12), Franz
(Ref. B-5) and, more recently, Belkinz and Weinstemn (Ref. B-13) and N.
Logan (Ref. B-14) who have given a thorough treatme;lt of this approach for the
sphere.

However, Fock theorv can be used to determine a partial creeping wave
type field and if we can find another way to handle the partial field due io the
small radii of curvature, we can again obtain good far-field approximations
for moderate values of ka. The value of Fock theory is twofold: (1) when
the wavelength is very small with respect to the characteristic dimensions of
the body, it yields an approximation to the true field in the shadow region
where the Kirchhoff result would predict a zero field, and (2) it is a procedure
which is easily applied to sphere and cylinder problems for moderate values
of ka (ka> 5). One finds upon applying “his process to spheroids that the
values of ka required in order to obtain good results may be very large.

In the three dimensional problems we see that the sphere soclution
with the interpretaiion of creeping waves and bebavior of the caustic serves

as a prototype from which we infer the sointion for other shapes provided the H
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FIG. B-7: COMPARISON OF AMPLITUDES FROM EXACT SERIES AND FOCK'S
CURRENT DISTRIBUTION FOR A CIRCULAR CYLINDER WITH

ka =12
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243




P 4 « 1aracteristic parameters are sufficiently lurge with respect to the wavelength,
i 0 For example, a symmetrically illuminated spheroid of large enough dimensions

1 LA should be an easy generalization.

S -

Suppose we consider a prolate spheroid in somewhat more detail. Let

the semi-major and semi-minor axes be denoted by a and b re 'pectively. The

condition we require for the application of the Fock-Franz theory is that

.

21

k R ., be large where k = — and R is the minimum radius of curvature,
min 5 A min
R =B
min a

As an example of this limitation we note that for a prolate spheroid
of —g— = 10 the requirement k RminN 5 would imply ka » 500. This was
pointed out by Belkina and Weinstein (Ref. B-13).

If we let k Rmin decrease while we keep ka, kb large we approach a
body which is ""large" but which has "sharp" ends. We illuminate this object
along the symmetry axis and consider a limited application of our "creeping
wave'' theory. Certainly for k Rmin < 1 the forward tip will scatter more
like an infinite cone than like a sphere of radius b, hence, our theory is not
applicable. In the penumbra region all requirements are met and we feel
justified in making a creeping wave analysis. Granted this, we have launched
a wave which is creeping toward this effeciive discontinuity, the rear tip.

Here we must again have recourse to another description and conrider the

wave to be reflected from the rear tip and again launched along the surface.
An example of this would be the thin cone radiation problem when the

source is far from the tip (a = distance from tip to source). The Green's
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function for this case is approximated by that for a cylinder and thus Iock

§
!

theory should give excellent results. If an infinitesimal slot is along a
generatrix of the cone, the Fock answer should be excellent for all ka. If

one can obtain a tip answer to add to the Fock result, then one can haudle

SN Y SR AT,

all kinds of slots on cones.

We postpone our discussion of the ogive, finite cone, and the spheroid
approximations (for moderate values of ka) until we reach the resonance region

discussion of Section 5.

paenp-of

In addition to the Fock theory, small wavelength approximations can

be improved by making use of known results. Just as Artmann, in his solu-

vt e
I ULI A ORI, 2 NP % AN Vo A vk i, A

tion for the thick half plane (Ref. B-15), replaced the cylindrical edge with a
J polygon, we can obtain an approximation for the thin finite cone by replacing
the cone with a regular pyramid. The base, locally, will be a wedge and to
E i calculate the field ecattered by the cone base, we will add up the fields
scattered by all the wedge-like segments into which the cone base has been

decomposed. We shall consider the cone in some detail, hence it might be

valuable to first present the physical optics approximation.
The problem we shall consider is that of determining the radar cross
section of a thin finite cone when both transmitter and receiver are situated

on the axis of symmetry of the cone in the far zore. We will treat the

"y

case where the waveiength of the incident radiation .3 much smaller than

o

the altitude, Z,, and the bace radius, a, of the cone. The geometry of the

G0t L i B R B s T i St G

prodlem ia as shown in Figure B-9.
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FIG. B-9: CONE GEOMETRY

We shall also utilize polar variables in the x-y plare as shown in

Figure B-10.

—’,<

O»

FIG. B-10: POLAR VARIABLES

The following definitions of radar cross section (of perfect con-

ductors) will be used,

i
< i 2 E 2 H

e . B o =lim 4rr” | —R| <im 44| — (4.10)
3 I+ s T+ ® Hi
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The Kirchhoff (physical opticé) expression for the scattered magnetic field

is (Ref. B-16)

", e e S IS A TH G T A Y NI SN Y e B b R v C ORIV S 5 M‘;

E ! 28 ik +ikr A, > A > A
- c— £ — R .DT-0@.Na (4.11)
F; 2x r o
L
E where R

R A "ﬂ(?’ . (ﬂO + k)

f = ne ds

S'
! S/ = illuminated area of scatterer

£ = unit outward normal to §

r' = position vector of point on S

T = position vector of field point

A

d = direction of incident magnetic field

{1\0 = direction of receiver to origin

ﬁ = direction of transmitter to origin.

i i
Note. We assume 'H I = ‘E ‘ =1, In this case, the following relations

hold. . . \ .
n = ainaiz+cosar(i cos B + i_ sin P)
X y
= xf +y1 +24
X y z
4 -1 (4.12)
A _ A
n, =-i,
£ = 4
z
']
as = Zztan @ dz™ 3.
cos a
Hence
A A
ﬁo. a - i . iy =0, (4.13)
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and R A
A +ikr/ . (‘30 +k)
T . T- s n . 'r‘xe ds
0 o
sl
which becomes
2r -
9 Z -2ikz’
= - tan @ g S z'e dz’dB. (4.14)
0 0

The integration with respect to 3 yields

R o ~Zo ~2ikz!
ﬁo e f=-2xtan" @ S z'e dz’ (4.15)
0

This integration can also be performed yielding

-z
-2ikz! ~2ikz’ °
ﬁo°?=+ 2r tan® @ e + = R
(2ik)% 2ik
0
or
. o I' #2ikz, +2ikz,
ﬁ o f=<-27 tan a € 2°+ 0 - 1 . (4.16)
l_ 4 21k 4k°
Hence
+ikr +2ikz +2ikz
- z
js - le tan’e k 4§ O 428 ©° _ 12 (4.17)
r v 4@ 21k 4K
which can be written
4ik(r + 2z_) -2ikz
- A
7o - le o tame? | L -k -2 2| (a18)
2kr y 2 Y 2
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Since ‘kzo‘ > 1 (small wavelength approximation)

ik (r +
-ieﬂk (r +2z,)

| LP tan a ? (ikz )
2kr y °
+ik(r + 220) 9 .
e L~ 7 tan ai
(0}
2r

Now using the definition of radar cross section we have

o a2 2 . 4
o =lim 4=xr —_ =y 2° tan a
r-o Hl °

or

. 2
O 7 a tm a,

(4.19)

(4.20)

We will now approximate the cone with a pyramid and determine the

field scattered by the wedge segments that constitute the base.

To illustrate

the technique we will first use the pbysical optics approximation for the field

scattered by the wedges. We use the Kirchhoff expressions for the scattered

field previously presented where in this case (incidence perpendicular to the

back face of the wedge - see Figure B-11) we have

D>

A A
= gin® in -~ ¢coBY iE

4 A
LU +nfn +¢ T, )
hzs no § component, i.e., c&-'fE =0
fﬁ
y
dg dg
sinY

"

& r>°n> >
]
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E‘ FIG. B-11: WEDGE GEOMETRY
, A
s ) Hence f} -aa=iE-a,=0, and
L - .
) . A - cos?Y t2ikg
., S s S e dg dY . (4.22)
' ° sin Y
} : 0

E : ©
s ~2ik§ -
a . f = -—-—L— g e dg - L L
0

i ° tanY

Associating the edge contribution with the value at the lower limit (just as in

the infinite cone case we obtain the "tip" contribution) we obtain

i t
%
- i
A ef=4— S (4.24)
| ° 21k tan Y
: Hence
4 8 -L +ikr A
H = e a. (4,25)
4x tan Y r
§
g 250 ’
E
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Now lc#ting L = a d3, where a = radius of base, and integrating around the

A
base (@ = constant vector), we have

i gB ~ 4ikl‘ _aaeﬂ}{r
) i -—-1 &8 _ _ a8 - - (4. 26)
‘{) 4rr tan? 2r tan"
i
| 2
]
i 2 ok l
i o x| I
j ) H'
ae**fikr A 2
4| - P (4,27)
2r tan7
2
. _a
| tan2 Y
:
But Y = -% - @ (see Fig. B-12) where « is half the cone angle; thus,
tan o = tan ( -22{- - )
= cot”?
and finally
‘ 2 2
c =7 a tan a, (4. 28)
’é
: which is precisely the nose-on result obtained for the cone directly with
physical optics.
a

FIG. B-12: DETFINITIONS OF ¥ AND «
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Now we are in a position to employ this technique to obtain a new f{inite cone
result. We make use of the following expression for the electric field scat-

tered by an infinite wedge:

A
- ikr + i 2~ 2 E(a)} - E (b)é E(a)}+ E(b)3
ES = __2_“1_1.{_1:_ e 4 sin ( T ) -
2(2r - ) 2% -7 B A
(4.29)

(Ref. B-17) where incidence is in a direction perpendicular to the edge of the

wedge and

E(a)=Ei component of the incident field perpendicuiar to the edge of the wedge,

E(b)=E:| = component of the incident field parallel to the edge of the wedge,

2
A = cos ( 2'e~)+cos (—E—)
27 -3 T
2
B =1 - cos ( )
2r -y
6 = angle of incidence measured from the bisector of the exterior

angle of the wedge, and 3 and é are unit vectors perpendicular and parallel,
respectively, to the edge of the wedge.

This expression is valid for an infinite wedge. Ir order to obtain an
expression for a wedge of finite edge length, we again look at the current
distribution integrals. We know that the integral over the edge length, will

be, in the two-dimensional casa,
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ky r + ¢ Kkr + -"-;-) (4. 30)

Q

-
Se dga.,,f;—x €
(o 4]

and, in the three-~dimensional cage,

5 2
L ik yr? + ¢
[ e d¢~ Le . (4.31)
J

0

This is the only difference between the two- and three-dimensional problems
so that the three-dimensional fields can be obtained from the two-dimensional

fields by multiplying by

~ri

Le4

=

Thus we obtain, for linear polarization, the following expression for

the scattered field for a wedge of length L:

oL 2\ | B0 - xof  B@R + Bwb
E = — sin < - .(4. 32)
2r{(2x-7) 2 -9 B A

Again we are really considering the base of a cone and hence

A
P = cos B -{ sin B
x y
A A o
3—+ixsmB-—1ycosB.

A
ﬁi, we recsall, is equal to —ix, but

A s A
ix=-pcoa,8+BsinB.
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(4. 33) ]
i
}
E!ll = - sin B. ;
. . i i A A
Thus, using these relations for E.L ’ E” » P and B,

A
Lp - E“ =(3 cos 3+ 8 gin f3) which, in rectangular unit vectors, is
A
=<1 cos 28 —’i‘y sin 28, (4.34)

and similarly,

i i A A
Ei_s + E“ B -'/p\ cos B - B sin B, or simply
. A
= _ 1x' (4. 35)
Substituting in % we chtain
r-A A i
R Leikr 2 i cosZB+i sin2:3 i
E®- 8in X ) -
2r(2x -v) 2r Y
1-cos + cos >
L 2x - 21- 2x Y

(4. 36)
As befo. 2. we set (L =ad3) and integrate over 8 from 0 to 2%, obtaining

for the scattered field from the core,
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Ncw, using the following definition of o,

ES

B

o =lim 4» r2
r'—sQ

]
we obtzin, remembering that 6§ =#/2 + Y /2,

o )

-Y
o = . . (4.38)
(27 -v) r
- co8
2r -
In terms of the cone angle @ we have, since ¥ = -g— -a,
3 2
x a 2
g = cosaec2 = . (4. 39)
(37/2 + a) 3r + 2

The wedge solution must be restricted to cases where the ring singularity is
dominant. As an example, for the cone with ka 3 1, this obtains for a such
that icz0 > 1. Consider, for example, a cone-cylinder combination viewed

nose-on (see Fig. B-14). The expression (4.37) still applies in this case,

so that since 8 = ¥ /2 now, we huve

35

This result is compared with the physical optics result in Figure B-13.
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- a»—dw - — . P e

. 2 12 >
sin
o ax® 2r -
3 (4. 40)
xa (21 -v)?
- Cco8
2x - 2% -
'§ In terms of the half cone angle, a, we have since @ =7x -7,
1
L "z
e 1
, 2 ( ¥’
> u 9 sin —_
b« | = 4“ > -z . (4.41)
! T a (x +a) < 72 > ( 9 52
;o cos - cos
! T+a T+a
, - ——.
. ' Cirection
\\ e ettt of
‘ : ‘ - _ Incidence
» . FIG. B-14; CONF-CYLINDER COMBINATION
¢
- ; x-7/2
: | | v -—
x| Direction
.- < Incidence
i E |
.
H
i FIG. B-15; DEFINITION OF WEDGE ANGLE
'3
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Similarly, for the contribution from any ring singularity, equation (4.37)
holds where v is the included wedge angle (Fig. B-15).

For ka > 1, kzo » 1 the ring singuarity dominates. As kzo decreases
with ka fixed the ring contribution diverges, approaching the first term of
physical optics asymptotically; hence it is necessary to use physical optics

for kz small, i.e.,

27 2
G~ 4n Ta .

A

Since the ring and first term physical optics are independent of wavelength
{(except for the implicit requirements ka >1, kzo >> 1), the graphing of
the complete cross section dependence on cone angle (ka fixed) cannot be
done in any two-dimensional curve without fixing A.

A similar technique of decomposition into straight segments was
employed by Artmann (Ref. B-15) in his solution of the problem of diffrac-
tion by a thick half-plane. He considered a half-plane of thickness 2a
capped by a half-cylinder of radius a, as ineFig'ure B-16. For ka3 1
and incidence as indicated he decomposed the cylindrical portion into a
regular N-gon of length L 3 \. Then by considering the conditions under
which the rays striking near the apex S be diffracted onto the nexi side of
the N-gon he determined the size of the penumbra region and hence the shift
in the diffraction pattern as comparet with the diffraction pattern of a completely
black screen of like form. In order for rays diffracted from one polygonal

face to have any effect on the next face, the following inequality must hold,
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L)
P
‘ o
e

S
2B “
- (n) ={n)
: kL | cos B - cos B é 27, (4. 42)
3 The quantities involved are shown in Figure B-17. To measure the penumbra
- |
§ ! width, or in this approximation the number and length of the polygonal sides
,“ 1
; that have any effect on succeeding sides, Artmann proceeds as follows. First
. he restricts the sides so that the only ones that affect the next one are the last
1 : and next to last where the last side contains the apex and naturally the next
3 to last side immediately precedes it on the lit side (see Fig. B-17). In order ;
L that this be true :
1 - i
(~N-1)  (N-1)
v kL | cos B -~cos f8 =~ 21, (4.43)
L
e 3 From Figure B-17 we see that
- (N-1)
S B = (4.44)
Y g ,"3"
3 -
; Since the next to last face (n = N-1) is not affected by rays from the preceding
4 o] face (n = N-2)
(N-1)
X ‘/4‘ -, B = 0,
‘ Substituting these values in eguation (4.43), (4.45) ylelds :
' kLl cos a - ll = 2% (4. 45)
but
cos 51 - l:- (4.46
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e Sworaes. e + B R
t 02
E | Again referring to Figure B-17 we see that
| gin 2~ - L. (4.48)
! 2 9,
! but
ke : 2
€\ ‘ hence
X |
. L~aa (4.50)
and
|
| or 1/3
a2 Ax ) (4.52)
ka

Once more referring to Figure B-17 we see that

Vo = L sin o (4.53)

or employing the above results

2/3
y zazaz(—g-) a. (4.54)
\ o ka
!
- Hence, reasons Artmann, the diffraction pattern of the thick screen is
’ displaced by this distance, ( %)2/ 3 a, perpendicular to the direction of
' 261




incidence as compared with the diffraction pattern of a completely black

screen.
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The above small wavelength approximations assist us in obtaining

approximate far zone crosc sections for may bodies of revolution. We

must describe what can be done to obtain results in the resc.ance region.
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THE RESONANCE REGION

To obtain answers for prolate spheroids when the radius of curvature
2
at the tip ( % ) is small with respect to the wavelength and simultaneously
when the wavelength is small with respect to the broadsisie radii of curvature,

2
b and -i—— , we must use anosther type of approximation. A point in electro-

}
magnetics is physically a region where all radii of curvature are small with
respect to the wavelength. Thus the thin prolate spheroid :ocks very much
like an ogive.

The approximate theory used by Belkina for thin spher»ius, .whié);‘m;nc
compares with her exact answers (Ref. B-18), and that uscd by Peters (Ref.
B-19) for thin ogives, as one might expect, are for the problem under con-
sideration almost equivalent. Beilkina's approxin.ate theory is a special case
of Peters' more general considerations. However, she obtains physical in-
formation from exact theory, not obtained by Peters, on when the approxima-
tion is valid for spherocids.

For axielly symmeiric transmission, scatiering from infini‘e cones is
extremely small in all dircctions except the specular direction. Local analysis
near the front tip and in the penumbra region for thin prolate spheroids or
ogives (since the reradiaticn is tangent to the path) provides no big scattering

effect except In the forwurd divection. A good portion of energy is guided

towards the rear point and again there is, primarily, n reflection back. The
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back flow of energy coming from the resar tip is again primarily in the forward

direction (flow towards the front tip) which is in the direction back towards

where it originally came from. Thus the backscattering near nose-on cross
’ section of an ogive looks as if it is primarily due to the iip in the rear. This
has been experimentally checked by Peters (Ref. B-189).

This suggested to Peters and Belkina that the thin body should act like

v a traveling wave antenna. Peters derives the results for certain ogives, and
derives the cross section for such an antenna (both monostatic and bistatic)
for aspects nut to 400 off nose-on. The theory would fail exactly nose-on
but provides excellent results for near nose-on aspects.

¢ To :illustrate the theory we shall concentrate on a specific exampie,
the thin prolate spheroid with E polarized field incident. The rsadar cross

section of a long thin body is given by

2,2 in 6 kL 2 42,2 2
o =1 2 = sin[:—z— (1 - p cos Bq = ..___)ﬁ'_r_. [f(e):]
7Q 1-pcosd P wQ‘

where Q is given by

. (xL/ -
Cin [(kL/pXHpi] Cin [(kL, pX1 P):l . f(p-l)cos

p3 2p3

Q-~2/eh)+ [oen/pxmt]

£ +(y>1kosBkL/pKl-p)]+(p2—1) -"fl‘ (31 {(kL/pXi+p)] - st [(kL/p)u-p)])

with Cin(x) being the modified cosine integral of argument x and Si the sine

BRLITS
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integral. We see that there are three parameters besides the wavelength
which serve to describe the body. They are the voltage reflection coefficients
Y , the relative phase velocity p, and the length L.

Voltage reflection coefficients of thick ogives and thin rods have been
experimentally determined by Peters who found that for a fairly thick ogive
the reflection rnoefficient is about 0.7, For tain rods Peters found that the
voltage reflection coefficient is about 1/ 3. Physical reasoning indicates that
the thin prolate spbercid, near nose~on, should be compared with a thin rod
rather than an ogive and as a result for a thin prolate spheroid we use a
voltage reflection coefficient of 1/ 3. However, as 6 iIncreases from zero
(the nose-on aspect), the point at which the traveling wave is reflected may
be expected to move around the body and in this case will cause it to enier
a region of larger radius of curvature. Thus we would expect the voltage
reflection coefficient to increase to 1 as the aspect goes to broadside. The
actual values used in the graph (Fig. B-18) are 28 given in the following

table:

ol o -40°| 40° - 60° | 6P - 75°

v 0,33 0.7 1.0

The relative phase velocity (p) is defined as the ratio of the length
of the body to that of the current path on the body. For this case it turns

out that p = 0, 985.
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As the angle of incidence is increased from zero, a point is ultimately
reached at which the traveling wave theory breake down and the analogy with
a thin wire is no longer possible. To deal with such values of @ (i.e., near
broadside incidence) an alternative model is required. In this case the body
is likened to a thick cylinder; the thick cylinder resulis are displayed for as-
pects in the range 9 = 60° to 6 = 90 in Figure B-18. The thick cylinder
results are obtained from Reference B-20.

The excellent, but as yet unpublished, experimental results of J. Lotsof
of the Cornell Aeronautical Laboratory are included in Figure B-18 for the
purpose of comparison. Indeed, it was the existence of this experimental
data which dictated the choice of the dimensions of the spheroid to be used
in this illustrative example.

Before terminating this discussion of traveling wave theory, a few
words about the -ﬁ polarization case for the same prolate spheroid are in
order. At near nose-on incidence we should expect the same current to be
induced, and thus the same cross section. However, with increasing 6, the
spiralling of the current may be expected to lead to an appreciable reduction
in the cross section; this has been confirmed by the above mentioned ex-
periments.

Now we shall turn our attention to the problem cf estimating the

~—

nose-on scattering cross section of thin finite cones for all values of ka.*

—_—

*
The quantity "a" denotes the radius of the base of the cone and as usual

k =2x/2x,
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We need the approximate behavior in the resonance region as we have already
presented small and large wavelength approximations. This is obtained by
assuming that the base is still the dominant feature as the resonance region
is entered from the small wavelength side. The resonance maximum o;' the
ring singularity would approximate, in both position and amplitude, the last
large maximum of the cone. Since in any physically realizable situation, the
edge of the base of a cone will have a non-zero radius of curvature, b,

(b <), the only difference between it and a wire loop (wire radius < 1)
relative to incident electromagnetic energy is that currents can exist "inside"
the loop but not "inside" the base of the cone.

When one looks at the axially symmetric cross section of a ring as a
function of wavelength, one finds that there are no minima. This then allows
one to predict that the contribution of the inner edge is negligible in comparison
to the outer edge when the wavelength is equal to the order of the loop radius
but greater than the wire radius. (If there were non-negligible contributions
from both the outer and inner edges, then at some wavelengths they would
add in phase and at some wavelengths they would add out of phase. But
there are no noticeable minima in this region!) Thus the cross section of
a loop here looks like a Rayleigh type answer, depending cnly on the loop
radius but not on the wire radius. This then, gives added justification for
using an analogy between the conical base and the wire loop. Kouyoumjian's
variational results (Ref. B-21) and Weston's exact results (Ref. B-22) for

wire loops in the resonance region can then be utilized. Their results
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(as a function of wire radius and loop radius) indicate thal the resonant peak
is fairly insensitive to changes in wire radius but that as the wavelength de-
creases the wire radius becomes important. However, when the wavelength
decreases, we use the wedge approximation. There may be a region on the
small wavelength side of the loop maximum where other, smaller in amplitude,
maxima can occur. These lesser extrema are essentially averaged in this
approximation.

On the Rayleigh side, we find that the Rayleigh line, which i8 an upper
bound on the cross section, lies so close to the ring maximum (in fact may
intersect the ring curve before the maximum) that the existence of any
maxima greater than the ring maximum on the Rayleigh side is precluded.
This is illustrated in the following figure (Fig. B-19) where the experimental
results of S. Silver of the University of California, R. Kell of the Cornell
Aeronautical Laboratory, and M. Ehrlich of the Microwave Radiation Company
have been included for the purpose of comparison.

In order to obtain off-axis finite cone results and to check our assump-
tions concerning the different reflection coefficients at the two ends, we compare
the off-axis results for the cone with the traveling wave antenna result. We
add the Kirchhoff disc contribution to the results fcr backscattering near rear-on.
These theoretical estimates are compared with the corresponding experimental
data obtained by Ehrlich in Figures B-20 and B-21. We note that the null
near the rear-on aspect is theoretically predicted to be too near to the
6 =180° agpect. This could have been anticipated since we know from the

resonance discussion of the importance of the disc contribution.
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By using approximations based on a creeping wave type picture we

augment the above theory for nose-on results where f(6) = 0. For ogives
0 . .
of 1/2 angle @, @ 20, and ka>-15 (a = 1/2 maximum minor dimension)

we obtain a nose-on result of

When the creeping wave contribution is negligible, then the 3—23—

augmentation disappears. This occurs for thick ogives. The above formula
holds for all ogive experiments analyzed to date within a factor of two. A

feeling for when to drop out the iz)* can be obtained from known sphere

results.

The reader is now in a position to fill in roughly the complete cress

section curves for ogives and spheroids.
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APPENDIX C

CROSS SECTIONS OF CORNER REFLECTORS AND OTHER MULTIPLE
SCATTERERS AT MICROWAVE FREQUENCIES

1
INTRODUCTION AND SUMMARY

If a body is not convex, radiation incident on it may be reflected
a number of times from one part of the body to another before finally
being reflected away from <he body. These multiple reflections have an
important effect on the radar cross section of a complicated body such
as an airplane. Therefore, the following study of the radar cross sec-
tions of multiple scatterers at short wavelengthe bas been made. This
paper presents a summary of known data on muitiple scatterers, together

with a few new formulas for special cases.

The best known and best understood example of a multiple scafterer
is the corner reflector, which is widely used as a beacon and as a standard
in experimental determinations of cross section. A corner reflector consists
of sections of three mutually orthogonal planes, and has the characteristic
property of giving a large monostatic cross section over a wide range of
directions of incidence.*

A simple approximation to the bistatic cross section of a corner

reflector is given in equations (2.1.5) and (2.1.6). An optical model to

®
Certain closely related configurations are also commonly referred to as

corner reflectors.

e16




bes used in conjunction with equation (2.1.5) for determining the monostatic
cross section of a corner reflector is described in Section 2.2. Explicit
expressions for the monostatic cross sections of square and triangular
corner reflectors are given in Secticn 2.3. A study of the bistatic cross
section of a square coraer reflector witn the transmitter on the axis of
symmetry is made in Section 2.4. A discussion of the effects of con-
structional errors, compensation, and truncation is given in Section 2.5.

When the multiple scatterer has surfaces which are curved, the
cross section may be obtained by applying equation (2.1.4). The applica-
tion of this formula involves the geomeirical optics approximation to the
fizlds on the scattering surface and this is given in equation (3.1.1). In
the special case when the radii of curvature cf the scattering body are
finite at all of the reflection points the cross section may be obtained by
using equations (3.3.10) and (2.1.3). To illustrate the methods used, the
cross sections of a biconical reflector and of a pair of spheres are obtained
(Sec. 3.2 and 3.4).

A sampling of experimental data on corner reflectors is quoted in
Section 4. The authors wish to express their appreciation for the kind
permission of the Bell System Technical Journal to reproduce Figures C-16-
C-20, and of Dr. R. D. O'Neal to reproduce Figures C-14 and C~15 and the

figures in this appendix.
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THE CORNER REFLECTOR*

2.1 Analytical Method for Determining the Radar Cross Section of the Corner
Reflector

Although the simplest method for obtaining radar cross sections is the
method of geometrical optics (References C-1 and C -2), this mathod is not directly
applicable to corner reflectors because it predicts that the radar cross section
is infinite in the directions in which radiation is specularly reflected and zero
elsewhere. More explicitly, for a scattering body consisting only of plane
surfaces, geometric optics predicts that the incident radistion is scattered into
a region which, at large distances from the body, subtends a vanishingly small
solid angle. Actually the radiation must be spread by diffraction over a region
of solid angle (A /h)’ where A is the wavelength of the radiation and h is the
characteristic dimension of the body. Near the body this objection no longer
exists so that geometrical optics can be used to obtain the fields on the surface
of the scatterer when A<€h. When the magnetic field is kmown on the surface
of a perfectly conducting body the following formula (Reference C-3, page 466)
can be used to obtain the scattered magnetic field at any point in space:

a ikR

fo-L S(ax‘ﬁnv" as’ (2.1.1)
[ ] 4' . R

*
Much of the material presented in this section sppears in Reference C-4.
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R = S —

where H is the magnetic field on the surface of integration,
ﬁa is the scattered magnetic field,
f is the outward unit normal to the surface,

k =2x/x,

s "
. 3 3 agiben D)
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R is the distance between the integrstion point and the field point.

The integration is performed over the illuminated surface, 8', of the body.
When the field point is at a large distance from the body, (2.1.1) can

be approximated by

. gk kT - -k
H »~ Ek e (b x H) x fe das’ (2.1.2)
8 4x r

sl
where T is the unit vector from the origin to the field point,
r is the distance from the origon to the field point, end
T’is the radius vector from the origin to the integraiion point.
In this report the radar cross section o is defined as

2

- Y
H./Hi

o =lim 4r?
r-m

(2.1.3)

where ﬁl is the incident magnetic field. Throughout this paper ‘ﬂi‘ is

taken to be unity. In view of (2.1.2), (2.1.3) can be written s

- -ikf. P 2
o =—;;— 5 B xH) x fe . (2.1.4)
sl

The integral in (2.1-4) is an elementary one since the surfaces zre

planes and the magnetic field on the surface is obtained by geometric optics.
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However, these integrals are usually tedious to evaluate and provide more
information than ie required in most applications.

The scattered energy is concentrated in a number of beams, each of
which is centereci about a specular reflection direction. Ordinarily the most
important information is the maximum radar cross section for each beam and
the half- power widths of each beam. The evaluation of the part of (2.1.4) that
corresponds to a particular beam gives nearly the same result as would be ob-
tained for diffraction at normal incidence through an aperture having the shape
of the projection of the part of the corner*that reflects rays in the direction
of the beam. Therefore, the maximum x:adar cross section for each beam is
approximately:

o =dr A’ [ _ (2.1.5)
where A is the area of the above-mentioned aperture,

The angle 4 ¢ between the beam direction and the direction in which
the radar cross section has decreased by a factor of two is approximately
(Ref. C-4)

§v =15 21/B (2.1.6)

where B is the radius of gyration of the aperture taken about an axis through
the center of gravity of the aperture and perpendicular to the plane in which the

deviation from the center of the beam is taken.

2.2 _An Opticai Model for Comer Reflectors
One of the beams in which the scattered energy is concentrated is

*

R should be noted that the effective aperture area uged here is not necessarily
the same as the projected area which is used in a similar formula for the for-
ward scattering cross section.
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reflected back toward the transmitter. The value of A for this beam
determines the monostatic cross section through (2.1.5). The task of
obtaining A analytically can be avoided by use of an optical model which,
looked at from any direction, presents an aperture whose projected area
is A.

Such an optical model can be constructed by cutting appropriate
! openings in three mutually orthogonal opaque sheets (Ref.C-4 and C-5). For the
corner reflector in Figure C-1, the openings are as shown in Figure C-2. Each
of the three apertures shown in Figure C-2 isobtained by cutting one of the
faces of the corner reflector out of each of the four quadrants so as to
give a symmetrical figure. Figure C-3 shows the optical model cousisting
of the three apertures of Figure C-2. An -optical model for any corner re-

flector can be constructed in precisely the same manner.

X

FIG. C-1: A CORNER REFLECTOR

281



FIG. C-2: APERTURES IN OPTICAL MODEL OF CORNER REFLECTOR

x»~ ~Y

The two views form a stereo pair, A three dimensional effect
may be obtained by focusing the right eye on the right view,
the left eye on the left view, and then superposing the images.
Alternatively a standsrd stereoscopic viewer may be used.

FIG. C-3: OPTICAL MODEL OF CORNER REFLECTOR
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2.3 Monostatic Cross Section of Square and Triangular Corner Reflectors

In Reference C-4, the value of A for the beam reflected towards the
transmitter has been determined analytically for both square and triangular

ccrner reflectors (Fig. C-4).

t
b
4 I
—
Square Corner Reflector Triangular Corner Reflector

FIG. C-4: SQUARE AND TRIANGULAR CORNER REFLECTORS

The value of A is expressed most simply in terms of the cosines of
the angles between the axes of the corner reflector and the direction to the
transmitter. If these cosines are £ € m gn, then A is given by:

For a Square Corner Reflector:

A=4{m b®/n, (m gu/2)
2 (2.3.1)
A=l(4-£—)b, (m >n/2)

For a Triangular Corner Reflector:
A:4-im____ bz’ (l{-m‘n)
tm+n (2.3.2)

A=({+m+n - 2 ) bt, ([+m>,n).
d+m+n
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The transmitter direction making equal angles with the three axes
is a symmeatry axis for square and triangular corner reflectors. If § is the
angle, in degrees, bei'ween this symmetry axis and the direction to the trans-
* | mitter, then, for small § , A is given by:
For a Square Corner Reflector:
A% /3 (1 -00m46)0 (2.3.3)
For a Triangular Corner Reflector:
A (1//75)(1=-0.00076 6 *)p’ . (2.3.4)
From these equations and from (2.1.5) it follows that the dimension-
less quantity o 2 / arp? - A2/ g denends only on the direction to the trans-
mitter. Curves of constant A2/ b4 are plottedin Figure C-5 fr a square corner
reflector using the trilinear coordinates ,52, mz, and n. As can be seen
from (2.1.5), (2.3.3), and (2. 3.4) the maximum values of ¢ for square and

4
triangular corner reflectors are 12x b [ 2 and 4lb4/ 3A2 respectively.

2.4 Bistatic Cross Section of a Square Corner Reflector for the Symmetric Case

The analytic methods described in Section 2.1 are applicable to both the
monostatic and bistatic cross section problems by a suitable choice of the radius
vector from the body tc the field point. To illustrate the procedure for com-
puting the bistatic cross section, consider the case of 8 square corner reflector
of side length b, The orientation of the transmitter is as indicated in Figure C-6.

The receiver is restricted to the first octant (x =0, y =0, z > 0).
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Transmitter

Direction of Incident Radiation

FIG. C-6: TRANSMITTER ORIENTATION FOR THE SYMMETRIC BISTATIC CASE

When the wavelength of the incident radiation is less than the side
length b, the radar cross section is determined almost entirely by the triply
reflected radiation. Thus to apply (2.1.1) it is only necessary to obtain
the magnetic field H for the triply reflected rays. Consider a ray reflected
first from the x-plane, then frrm the y-plane, and finally from the z-plane,
and let the incident magnetic field ne

A

’
ww (t - k.r )

ﬁi =8 e c (2.4.1)

where 2 is & unit vector. Suppressing the time factor e-u, the magnetic field

along the ray going from the y-z plane to the x-z plane is
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A
where i, is the unit vector in the x direction. The magnetic field along
the ray going from the x-z plane to the x-y plane is

{-m[?c +2 &%) ’1‘2] .*}

[-£+2(£.’i‘z)?] e (2.4.3)
2

- A -
On the x-y plane r'= xi, + yfy, so that /i\z- $/=0. % is a unit vector normal

to this surface, then

*

PR & Gt
nxH=-2{( x%e (2.4.4)

In general, for triply reflected radiation,

A -m(£~i‘9}
’x\zx1i=w2(ﬁx3)e{ : (2.4.5)

on the scattering surface.

It is still necessary to determine how much of the ccrner is illu-
minated by such triply reflected radiativn. A consideration of the cptical
model shows that the entire corner is illuminated for the transmitter orienta-
tion of Figure C-6. For orientations of the transmitter cther than that in Figure
C-6, the corner is not entirely illuminated. Howe\.rer, these orientations present
no new problems, since the part of the corner that is illuminated in these

cases may 2lso be found from the optical model.
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From (2.1.4) and (2.4.5) the cross section of the corner reflector is

izxa)xre dxdy

o enezntone

A A -
-ikk(k + ). r/
(fy x8) xTe k yex dzdx (2.4.6)

+

b b \
A A ‘ik(k"'e)‘f’
+ s(ixxa)x?e dydz
0 o
A A S ) A A A A
Let T =r T, +r. i +r,l, k+?-Eix+F?y+G'i‘z, andﬁ-axix+ay1y+aziz

yy

In this notation (2.4.6) becomes

b b
-ik (Ex + Fy)
4 ” A j
o =— [l‘zaxix+rzayxy - (rga_+ rxay)?z]S e dx
A L o o
(2.4.7)
b b .
-ik (Fy + Gz)
ra1+ra1-(ra+ra)? SSe dydz
Xyy
0o o
b 2
-ik (Gz + Ex)
rai+rax -(ra+rg)t SSe dzdx .
yzz X X 22 xx y
)

After performing the integration, (2.4.7) becomes
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2 -ikb(E+F) -ikbE -ikbF
- A rai +ral -(ra +ra)f| & =€ =€ +1
3 Z XX zy EF
n . a e-ikb(F+G) .e-i.kbG -ikbE +1
+ i+ - + €
Lr,xay iy rlxaziz (ryay rzaz) ix -
(2.4.8)

-ikb(G+E)
e -@

-tkbG -ikbE
-€ +1 2

A
1 +rai+ra?-(raz+ra)i
yzz y XX z XX Yy

GE

To simplify (2.4.8), the following condensation symbols are introduced.

cos kb{F+G) - cos kbF - cos kbG -1
C = »
1 FG

cos kb (G +E) - cos kbG - cos kbE -1
c, = ,
GE

cos Kb{E +F) - cos kbE ~coskb F - 1

3 EF

. - sin kb (F + G) - sin kbF - sin kbG
1 e

. s sin kb(G + E) - sin kb G -8in kb E
2 GE

s - gin kb(E+ F) -sinkbE - sinkb F
3 ']

EF

(2.4.9)

In this notation, the radar cross section of the square corner reflector for
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the aymmetric case is given by

2 - 2
X
2 e— +r + + y
o : [[‘“}% zaz) c1 ryaxc2 rzaxc3J

4

12
a - +r +
[ r c (r 3 za ) c ruaycSJ

2
 t -(r + l
rac? (a ra)c3

(2.4.10)
+[-(ra +ra)s +ras +rasi
vy zz 1 y X2 zx

™ 2
+ + +
rxaya1 -(rxa r, a ) 8, rzays 3}

—

2
+{ras +ra - a +r~ )s .
X yzBZ (rxx yy) 3}

z1

This formula gives the radar cross secticn for any polarization of the
incident electromagnetic wave. To show how the bistatic radar cross section
varies as a function of receiver position for this symmetric case, (2.4.10)

has been plotted in Figures C-8, C-9, C-1C, and C-11 for a corner reflector

13
of side length b =25 cm., for three values of wavelength, and for the incident

magnetic field vector paralle! to one of the coordinate surfaces, that is

T
. .—:-x_.... + .-L R
N

The polar aszles designating recelver position are indicated in Figure C-7.
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/ Receiving Antenna

FIG. C-7: POLAR ANGLES § AND 7Y DESCRIBING RECEIVER POSITION

Figure C-8 shows the variation of o with ¥ for B = 54. 74° and for

wavelengths of 3, 10, and 30 cm. The variation of ¢ with 8 for a wave-
.: length of 3 cm. and 7 = 150, 300, and 45° is shown in Figare C-9. The

Y = 45° values were obtained at two degree intervals while the ¥ = 15°
and ¥ = 30° values were obtained at 10 degree intervals. Because the
10° interval is too large to show the variation of o with .B accurately,
curves have not been drawn for a wavelength of 10 cm. Figures C-~10
and C-11 show the variation of o with B for % = 45° and wavelengths of
10 and 30 cm.. respectively.

As was noted in Section 2.1, the acattering pattern of a corner

reflector is approximately the same as the diffraction pattern of an equivalent
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3.8

FIG. C-8:

|
i
A=3cm
i
]
A=10cm
/ % \
A=30cm
25 35 45 55 65
Degrees .
B = 54.74°
A = Wavelength
Direction of Incidence Along Axis of Symmetry
Incident Magnetic Field Parallel to x - y Plane
BISTATIC RADAR CROSS SECTION OF A SQUARE CORNER REFLECTOR

AS A FUNCTION OF Y
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aperture. For the symmetric case considered, the diffracting aperture is

hexagonal. For ¥ = 45°, the bistatic rader cross section for this aperture

is
- 1081rb4 (sin . 1./3)2 11)
-XZ—T_‘i sin Ts8in (2. 4.
where

The values of radar cross section (2.4.11) as predicted by this equivalent
aperture are also plotted in Figures C-9, C-10, and C-11 fer comparison
with the values obtained from (2.4.10). E should be noted that the half-
power widths given by both (2.4.10) and (2.4.11) agree with the values
predicted by (2.1.86).

Although the geometric optics and physical cptics approximations are
based on the assumption that the wavelength is small compared to the
characteristic dimension of the body, there is reason to believe that the
error introduced by the use of these approximation techniques when b/ A is
approximately one is sometimes much less thun an order of magnitude.
Kouyoumjian (Ref. C-6), for example, has found that the monostatic radar
cross section predicted by physical optics for a flat plate at normal incidence
does not deviate from the exact electromagnetic solution by more than a
factor of five for the range b/ between 0.8 and 5. Since it is not likely

that exact computations will be made of the cross sections of corner reflectors
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in the near future, and since there is reason to believe that the approxima-
tion techniques do yield order of magnitude answers for the square corner
reflector for A~zb, these techniques have been applied for a wavelength of

30 cm. (i.e. A /b =1.2),

2.5 Effect of Constructional Errors, Compensation, and Truncation.

Corner reflectors are generally used to direct a large signal back
toward the transmitter. This large signal is reduced in intensity if the
corner is not perfectly constructed. If the faces of a corner reflector do
not meet at exactly 90o then the beam which would have been reflected back
to the transmitter is divided into several beams, none of which, in general,
are directed exactly toward the transmitter. As a result, there will be a
reduction in signal received at the transmitter. In Reference C-4 the
msgnitudes of the errors which reduce the signal returned by square or
triangular corners (Fig. C-4) to one half the maximum returned aignal are
calculated. This error,\ , is measured ag follows: if one of the faces
of the corner is rotated about one of the coordinate axes through which it
passes, then /\ is the distance which the part of the face farthest from the
axis moves. These errors are independent of the size of the corner, and
therefore are difficult to avoid for large corners and small wavelengths.
For incidence along the axis of symmetry these errors are

Square Corner: one error, D =.402
three equal errors, £\ =,24 )

Triangular Corner: one error, A =.702
three equal errors, \ = .35
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For some applications, such as a movable corner used as a beacon,

it is desirable to sacrifice some of the strength of the returned signal in

‘W?"‘
A,

e

order to obtain a usable signal over a wider range of incidence angles on

the corner. This flattening and widening of the monostatic response pattern
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can be accornplished by truncation or compensation (Ref. C-5), i.e., the

removal of some of the reflecting surface (see Sec. 4).
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OTHER MVLTIPLE SCATTERERS

3.1 Formulas for Scattering from Curved Surfaces: Fock's Method

In Section 2 only scattering from surfaces having infinite radii of
curvature was considered. In this section multiple scattering from surfaces
f having finite radii of curvature will be considered. In Reference C-7, for-
mulas are developed for the scattering from curved surfaces. These for-
mulas, which are useful for computing the cross section of bodies with
curved surfaces, are summarized in this section.

The scattered electric and magnetic fields, as given by geometric

. - A - A D(O) ikr
ﬁs-[Ei-an(Eixn)J /—l—)_(;-)- e ,
- | - A D(O) ikr
H —[ H -2 -Hy ﬁ] / D(r) e

where Ir) is the cross sectional area of a bundle of rays at a distance

optics, are

(3.1.1)

r from the specular reflection point, and Ei’ -ﬁi is the incident field at

the specular reflection point.

The area of the bundle of rays at a distance r is given by

u
T ™
u v
D(r) = v v (3.1.2)
T T
-n v
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p _ pu pv
= +
11 A Ak ST A (3.1.3)
; 1 and
H
i T =g -Q.Q +rQ__ - TG ) 1.
pq  Buq T RpRgt T E@pg - cos pq’ (3.1.4)

where the summation convention is not being used. Here u and v are curvilinear

coordinates on the scattering surface and gp? is the metric tensor given by

S "
e

o
v
L s
)
CIPREhsRes

2 2 2
= +
do Bu du Zguv dudv+g av (3.1.5)

_

Pq
where do is an element of arc on the surface, The g that appear in (3.1.3)

are related to the g by

pa
T uu uv ] - -
£ g gw "guv
R S ) (3.1.6)
vu vv Eubw " Euv
K | B Fuu

qu is the curvature tensor of the surface given by

on ox .} 9 on 3z
X sy o2 (3.1.7)

p 9q dp 3dq % 9q

where n, n v and n, are the components of the unit norma! to the surface

at a point x, y, 2 of the surface. The angle ¥ is the angle between the
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by

direction of incidence and the normal to the surface.
terms of the phase of the incident wave on the scattering surface e

Qp is the ordinary derivative of Q with respect to p.

L

a5

op

qu is the second covariant derivative

rP

qw

and [p, Q w] is the Chrisioffel symbol of the first kind

L LN ru

o]

pPq

is the Christoffel symbol of the second kind,

P e o w v ;
r'qw [q,wu] +g [q,wv]

og

Q is defined in
ik (u, v)

N

pw , Baw

oq

3.2 Scattering from Two Spheres

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

As an example of the application of the formulas in Seztion 3.1,

consider the backscattering from two spheres of equal radius for an electric

-tk
field ?x e 2 incident perpendicular to the common axis of the spberes.
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FIG. C-12;: REFLECTION GEOMETRY FOR TWO SPHERES

First, consider the doubly reflected ray shown in Figure C-12. For

the reflection from the first sphere the coordinates u and v are

= pl (3.2.1)

where 6 ) and ﬁl are related to the Cartesian coorZinates by

X=r sine1 cosﬂl,

y=r,8in0 snf,, (3.2.2)

1

Z=I'000891.

The normal on the surface of the sphere is

A =om 0y cos py { +omo s pyd +ooso, T, (3.2.3)
Thus, by (3.1.7)
Gg.9. Gy g | ' |
0
9,19, 6,4 ‘o
: . (3.2.4)
G 0 r sin @
P10 P9, i o™ 1
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The square of the element of arc on the sphere is

The phase factor is

Q (6, p1)=—z=-rocosa

1 1

and the first derivatives of the phase factor are

0191 'rosinel,

Yp,

0

The Christoffel symbols of the first kind are
L .2
[ﬁla ﬁl, 01] =-r “sin 6 cos 6,

2
[ﬂl. 01, ﬂl] =r = sin 01 cos 01 .

["1' 8 61] =[°1‘ By p1] ‘[91' P 91] ‘[pr b p1]
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2 _ 2 2 2 2 2
do” = r o~ + r © sin 6, dpy
- - [ 2
4 g r 0
6,68, 91})1 o
) 2 2
g g 0 r © sin” 8,
.9y 8,9,
S 4 R
[~ - B 1
0.6, 88 = 0
g g B
e 8 Tz,
- 4 r, sin” 6

0.

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

(3.2,10)
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The Christoffel symbols
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of the second kind are

A HOI ' ¥ o 28 b .. 7y §o - A FRFaes g iy " Ny # 5 = " N Ty v ey " r T oy -
) ) } ’ § ot i £ " 3 v, e 4 s - = I AT I e T O
¥W¢ G L T T P S D NN o e i Syt W YOS SO ol e VR S fe - ‘ " e
PR F 2 b Tt~ St g v . 2 e - 4 ¥ J -y Lk 1Lt e Nl FEP XA el Wi I rC A RO Lot RIS I LI e .
TR T s NI : P g :
:

0
T, ) S
plpl =-sin 6, cos b,
Iy o p1=cot&‘ (3.2.11)
1 l 1, L] L)
o p
r,.,® .r,, h.r 1.r 1.
6.0, ' =te0, ~=Top "=Tpp "=
Therefore, by (3.1.9) the second covariant derivatives are
- - r .
Q Q -Q 0
10,6, 16,9, 1
= 2 (3.2.12)
Q Q 0 -Q . 8in 0
1p.6 .
] p.o, 190 1 1
Since ¥, = 61, and Ql = -r  cos 91 the symmetric tensor (3.1.4) is
T T l [ Q 2 2R Q 0 |
6101 91”1 1 171
= R.Q (3.2.13)
2 1
T T 0 (r -912)(1-2 _1_.2..__)
L P16, Pih) ° r

The cross sectional area of 2 bundle of rays a{ a distance R, from the

1
specu!ar reflection point is [ -
1. 6 £, -2R 9,
T T 5 0
6, h r,
D, (Ry)= P, g = 2R; (3.2.14)
T T, 71 0 e
6, A N
2 R, Rl
=cos 0 cos 6,  + 1+2 —— cos 6 .
1 1 r r 1
]
o /
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The electric field (3.1.1) scattered from the first spﬁere is

—
cos 6 ik (R, -r_cos 6
4 = = e 1770 D (3.2.15)
\ (cosé)l +92 =L Y(1+2 =1 cos 8, )
T, !‘o

For the ray shown in Figure C-12, 6, =7 /4 so that the electric field

incident on the second sphere is

ik (d - —-3—r0)
-1 e J2

(3.2.16)

/(2{2‘;‘-’--3)(\/?—} -1)
0 0

On the second sphere the coordinates u and v are taken to be u, =6

2 2
and vy = pz. These coordinates are related to the Cartesian coordinates by
x =r, 8in 92 cos pz,
=d+r sin 6 sin : 3.2.17
y o 2 p2 ( )

Z <1, Co8 92.

The metric and curvature tensors, and the Christoffel symbols, for
the second sphere are obtained from those of the first sphere by replacing
91 and }31 by 92 and ﬁz.

The phase function on the second spbere is given by the simultaneous

equations
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(2, -9,) sin20, cos f, =r_ sin 62 cos P, - r, sin 8, cos Py

(92 -§21) sinze1 sinf; =d + 1, 8in 6, sin P, - r_ sin 6,

(9 y

9 -Ql) c?s 2(91 =1, cos 62 - T, cos ’]

. i = .l :.Z. = _B_L
where in this example 6, =6, = o~ , $, o and ﬂz >

Hence, the phase factor and its derivatives for this example are

T d To
2d - =2- -—+
\ i 2 L i
51 92 ’ 92 = p R Q =
r*,, 6262 2,/_2_—‘3—-3 pzpz Jz — -1 92ﬂ2
rO o
3 The metric and curvature tensors at 0, = 7/4 and P, =37 [2 are
- - - -
8.6, Bo.p . 0
2°2 272 2
g £ i 0 ..lb_..
p292 pgﬁz 2 ]
and
K G ] r 0
9282 050, °
= r .
G G 0 -2
P02 050, 2
L J L ]
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(3.2.19)

(3.2.20)

(3.2.21)
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Since !2 = ¥ /4, the symmetrical tensor (3.1.4) is

-, -
[ ] o, 4d-2Vr, .
6,6 sz.‘ 2 o Ry
272 e 2 J2d-3r,
Tpe T 0 o+ —2 L (3.2.22)
2’2 P2f2 | L 2 JTd -,

The cross sectiona! area of the bundle of rays at a distance R2 from the

specular reflection point is

1 Ry M-2]2r R, 2d
2 o 2J2d-3r, T V2 d-r

(3.2,23)

Therefore, at a large distance from the scatterer, for the doubly reflected
ray shown in Figure C-12, the scattered electric field is

s kiz+d-2y2 r)
r e
2 . (3.2.24)

r
4d [ 1-—2
J2 4
There is a second doubly reflected ray which gives a contribution equal
to (3.2,24) and there are two singly reflected raye each of which contribute to

the backscattered electric field by an amount

ik(z - 2r.)
_Jo 4. (3.2.25)
2z X

In addition there are backscattered rays which are reflected more than twice,
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may be neglected and the total reflected field is approximately

If the distance between the centers of the spheres is much larger than the

radii of the spheres, the radiation which undergoes more than two reflections

- -
o k(d-2 J27r)
; -2kkr, r, e eikz a
- + i
; r, e o L (3.2.26)
' r
2d ﬁ - J_°
2 d
. ]
. ¢
* ¢ 3.3 Formulas for Scattering From Curved Surfaces: The Method of Stationary
Phase

stationary phase.

Another technique for finding the scattered fields when the wavelength
is less than a characteristic dimension of the scatterer is the method of

The field associated with a multiply reflected ray, as

given by this method, depends upon the radii of curvature of the body at the

specular reflection points. These radii of curvature are assumed te be finite.

A Cartesian coordinate system is used at each reflection point.

The

z-axis is taken along the normal to the surface, and the x- and y-axes are

chosen so that the x and y planes are the principal sections of the surface,

; that is sections in which the principle radii of curvature are obtained. In

cees N)

5 the vicinity of the reflection points the equations of the surfaces are, approx-

(3.3.1)

are the principle radii of curvature of the j'th surface.

i imately,
2
; X 2
! 2 - - A -1, 23,
! 2 2
. P51 Py o
‘ oo where and
i le Pj
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Let Gj and p § represent the polar angles at the j'th reflection point, ?j’

represent the radius vector to a point on the j'th surface from a fixed

arbitrary reference point. Assume the incident magnetic field to be
ikk.T

de d( r) where T is the radius vector from the reference point to an

arbitrary point in space. From equation (2.1.1) the field scattered from

the first surface is

-~ 1 , ’ ik ﬁ T
- A e '
Hs -——2 ](nl x 8 x VvV dsl (3.3.2)

B :

and the multipy scettered field reflected from the N surfaces in succession

is
- 1 A A A A A eﬂ(l"-?{
H,=—— ... x|{n x...x}|¢n x|{n xa xV———-———
8 - 1 - -
(2:)“5 S RMIRE 2 |’£'r1'
(3.3.3)
i | #4 - 7 k|7 k7| udke A
3 2 N 1
xv.‘i__l_____l x...{ x7& l N_ N ! xY&——— ¢ ds,...dsy.
21Tt P |i'-‘_';l
3 2 N Nl N

Assume the wavelength to be so short that k 1. For this case

ik
Ve lj+1 r - ike l j+i 21' (-r;,ﬂ _-;jr). (3.3.4)

I j+1 - j j+1 rj
In the integrand of (3,3.3) all of the quantities except the exponential factor
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can be replaced by their values at the specular reflection points. With this

approximation, (3.3.3) becomes

] (k)n{anx...x[{ﬁzx[{alxa} ] Jahy] buo. Jrfy
8 \2ni R R R
1 2 N
(3.3.5)
N
ik[?(';i‘*' Ko R]]
xI...Ie j=1 dSl...dSN
where
T/ -8 R R andT -7 -R. =R &
i+l i o i N RN N N

Let 51 = Xy €2=y1. A N I A P §2N=yN.

and expand the phase factor in equation (3.3.5) in the ﬁj. The first order
terms will vanish at the specular reflection points, leaving terms of second
order as the leading terms in the expansion. Neglecting all but second order

terms, (3.3.5) becomes

N
A ay
i ( ; )N c0sf1 e0sfp Z2Ng eik[k'ﬁji Ri]x
8 2ri R, Rz Ry N
~ (3.3.6)
@ @ memg
whereI=S ...Se dﬁl...dgzn is a 2N-disensional Fresnel
-~ -
integral, ﬂ is a unit vector giving the polarization of the scattered wave, and

N

€ and M are the matrices
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pi

: T 3 3 (3.3.7)
. i 6 E’l' 22 """ 72N
2N
L
M=M-=
2 2 2 B
cos8, +f- afn chos ﬂl ) sin elsmplconpl llnGZQostzsme lcusﬂl e 5
Pl 2R, ZR, 2R,
sin%6 sinp _cosp cosd, 1-8in’6 sin2¢ 8ind cosp sind sinf, -o
IR N N 1., 1 vl P e s W ! o
2 P12 2R 2R
R 1 1
sinb_cosP sind cosp, -a,,, sinb cosp siné sinf -a cosé
M M2z v e, 2+(x~sm262co-2p2x-—l~*’—). . 0
2 R 2R, 2 2R, 2R,
sind sinp sind cosP -a sin6 _sinp siné sinp -a 2
2 g St W VY A N ‘22-smesmp2eo.pz(_l-.¢’ ) o
Rl ZR1 2 231 4R2
8in6 cosf. sind posp -o
0 o it i 1 .0
2
Rz
sing a1 -
o . $ npfmezco-pz a0, .
2Ry
0 0 [ 0
tn29 inp cosp
sin 8. o8|
0 0 o Caen ANy
2RN-1 RN+R
RNJ N
cosé 1~umzanm7p“
0 0 ] seep + *n
N2 2
" m)
-1
L 4
{2.3.8)
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In (3.3.8) ajll is the cosine of the angle between the xj and the :»(j+1 axes,
aj 12 is the cosine of the angle between the X and the yj +1 axes, aj21 is
the cosine of the angle between the Y and the xj +1 axes, and aj 99 is the
cosine of the angle between the yj and yj+1 axes.
Evaluation of the integral I yields
xi
T2\ N
Te 1
L=\ ——— (3.3.9)
k
V M
where | Ml is the determinant of M. Thus (3.3.6) becomes
A N
al
ik (k' 1'1'*‘ 2 R )
g -f ° s
H =H (3.3.10)

s N
~

When the radii of curvature at the reflection points are finite, equation
(3.3.10) is equivalent to equation (3.1.1). To illustrate this equivalence,

the method of stationary phase will be applied to the problem of multiple scat-
tering from two spheres treated by Fock's method in Section 3.2. In this

problem
Pn = p12 = 921 = 922 = rO'

R, =d- J2 r,.

r
Rz”""_o , (3.3.11)
J2
= = X
9179, "%
A -l r
k.r{:—-——o-...
2 .
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Assuming that d - — & z, the substitution of (3.3.11) into (3.3.8) gives
J2
(2d - J2 r )4
I M‘ = (3.3.12)

2 2
8r, (d-ﬁxo)

The substitution of (3.3.11) and (3. 3.12) into (3.3.10) gives

o k(z+d-2J2 1)

0

(3.3.13)

If Jj2 z >>r°, equation (3.3.13) reduces to equation {3.2.26).

3.4 The Biconical Reflector

In the examples considered thus far the radii of curvature of the
scattering surfaces have either been all finite or all infinite. However,
many problems that arise in practice involve both finite and infinite radia
of curvature. Rather than attempt to give a general formula for all the
cases that might arise, the scattering from a biconical reflector will be

treated to lllustrate the appropriate technique. A method of attack fcr this
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problem hzs already been given, namely the use of (2.1-4) with the value of

fl in the integrand given by the geometric optics formula (3.1.1). As with
the examples which have already been treated, it is usually advantageous to
make simplifying approximations in the evaluation of the integral appearing in

(2.1.4). One approximation is to take into account only the current induced

. © e SR 1 0 BRSO SRR TSNS, A
coagi P N g

-
i B2 v
-5

DR L T N T Tr—— o T Y

on the scattering surface by the last reflection of a multiply reflected ray.

.

A sccond approximation is to use stationary phase in evaluating the integral

whenever appropriate. In the following computation only the case of trans-

mitter and receiver along the x-axis is considered (Figure C-13).

o0° - X
2b

1 -+

j—— 2b2 —

FIG. C-13;: THE BICONICAL REFLECTOR

The equation of the upper co..e is

i ; X while the equation of the Jower cone is
§ ' 2 2
% 1
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Equation (3.1.1) can be used to obtain the field reflected from the upper

cone to the lower cone. If the surface coordinates are z and §, then

x ={z + by) cos f,
y =(z +b,) sin p,

zZ =2Z,

The outward unit normal on the upper cone is

a=cosgq+smgf__l_?
o 0 V3 oy JT oz

.

Applying (3.1.7)} yields

o~ - r- -

Gzz Gzp 0 0
B G o z+ b
pz g
i 1 L 2

The arc element is given by

2 2 2
do =2dz +(z+bl) dg
so that
o T ~
B2z 27 2 0
4 g ¢ (z+h )2 .
Pz P 1
- - —

Toe inverse of the metric tensor is
r— -

gzz gzﬁ 1 / g 0

sz gﬂﬂ ’

ol —

—
-,
N
+
o
[y
™
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(3.4, 4)

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)
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The phase factor is
Q(z, ﬂ)=-x=-(2+b1)cos p. (3.4.9)
The derivatives of the phase factor are

Qz = cos f,
(3.4.10)
$ Qp=(z+b1)sinp.

The Christoffel symbols of the first kind are
[z‘ z; z] z [z, z; p] = [z, p; z] = [p, p; p] =0, (3.4.11)

[0 #: 2] --+pp=- [p = 8],

The Christoffel symbols of the second kind are

z P
rz = rp = r = I-' = 0,
2z 2z zf pe (3.4.12)

Y- /2 ey,
po

rf .2
pz z+bl
so that B _
sz sz 0 0
= = . (3.4.13)
np‘ QM_J 0 (1/2) (z+b,) cos fw_J

Since cos ¢ ='1\x-ﬁ =cos p/ V2,
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= - 2 . )
T,, sz 2-cos (z +b, ) sin p cos
T T (z+b ) sin P cos p, (z+b1)2 coszpﬂi1 (z+b;)cos p
pz PP L 1 -
L .J (3.4.14)
T,? sz‘ 1-(1/2)cos’p  (1/2)(z+b)) sin p cos p
i _ 9 R, cos §
Tﬂ Tp sinf cos cos P+ L
z p z+hb z+b
I i 1 1
- —

where R1 is the distance from the specular reflection point on the upper cone.

Thus

2 Rl 2
D(Rl) =(1/2)cos p |1 + -cos P} |. (3.4.15)
z+b; cos p

-ikx
If the magnetic field incident on the upper cone is ? e » *hen the magmnetic
¥y

field scattered from the upper cone is

(-sin pcosp ?x + coszp?y +sin P /i\z) eik[Rl - (z +b,) cos p]

R
1+ 2 -cos f
z+b cos f

For p = 6 the reflected magnetic field on the surface of the lower cone is

(3.4.15)

z+bh ik(z - b,)
—1 . 14 (3.4.17)
3z+b y

where z is the height at which the incident ray strikes the upper cone. If
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(3.4.16) is written in terms of the coordinates x', y', z' on the jower cone

with
X = (b1 - z') cos P!,
(3.4.18)
= (b, - 2') sin X
it becomes
\
(by - o)’ 2 4
ikl -b -2+ (1,2) —_—— L P+ o(p)

[:i +o(p]

where O(X) is a function for which lim O(x)/x = constant which is neither
X

zero nor infinity. If (3.4.19) is used in (2.1.2) and the int=gration over p'

is carried out by the method of stationary phase, it is found that the doubly

scattered field at a large distance x is given by

by - b ® (b, +2) (b; +22)
2 = by 3/2 1
ti{x - Zby ) .+ k — - 12
e SN ———-—7~1 e by + 32 ap' dz
y 2= X (b1+32)1 2
0 - (3.4.20)
by
i
. ’l‘_ Lo 4 4 e~ Skl 2b1) j by + dz
T 2 y \/b1+22
0

Integrating the last expression with respect to z gives

3ri
- ik(x 2b) 3/2 a
3 / (b2 m»2 - b, -bl )1y. (3.4.21)

Therefore, taking into account the radistion reflected from the lower cone to the

upper cone, the radar cross section of the biconical reflector is
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t g = QA ( bz 2 b2 - bl - bl ) . (30 40 22)
i 3 Numerically, the cross section given Ly equation (3.4.22) is in
& ; excellent agreement with experimental resualts that appear in Reference C-5.
o i

§
§ Futrthermore, the dependence on wavelength is in agreement with Robertson's
g I ; experimental results.
1
T
L
%". $
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EXPERIMENTAL DATA ON MULTIPLE SCATTERERS

Many experimental r:easurements have been made of the radar cross
section of the corner reflector. Of the bodies considered in this paper. data
are available for square and triangular corr2r reflectors {Ref. C-8) and for
biconical reflectors {Ref. C-5). In addition, the effects of compensation (Sec.
2.5) are discussed in detail in Reference C-5. The material in this section
is taken from these two references.

Theoretical curves and experimental points for the backscattering
from square and triungular corner reflectore are shown in Figures C-14
and C-15 respectively. The results are plotted so 28 to be independent of
the size of the corner. The experimental dependence of the cross section on

the size of the reflector is shown In Table C-1 for a square curner reflector.

TABLE C-1

Variation of Cross Section with Corner Side Length b

(A=9.1 cm)
Vaiue of n in
Size of Reflector g =KbP
6 inch 3.3
2 foot 4.0
3 foot 3.8
4 foot 3.8

A one foot corner reflector was used to obtain the constant K. For the & inch
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reflector, whose dimensions are of the same order of magnitude as the wave-
length of the incident rediation, the cross section deviated from that predicted
by physical cptics by a factor of approximately 1.6. The discrepancies between
physical optics theory and experiment for the 3 and 4 foot refleciors can be
attributed to non-perpendicularity of the reflector sides.

Compensation, i.e., reduction of scattering surfaces, can he used to
widen the response pattern of a corner reflector (Sec. 2.5). The response
pattern of the compensated triungular reflector, shown in Figure C-16, is
compared with the response pattern from an uncompensated reflector of the
same dimensions in Figure C-17. A special case of the compensated corner
reflector is the cornmer which has been modified so as to yield a minimum
response along the axis of symmetry (which u;sualiy yields the maximum re-
sponse). The response pattern from this corner (Fig, C-18) is shown in
Figure C-18.

The response pattern from a biconical reflector is shown in Figure
C-20. This response pattern is independent of azimuth since the biconical
reflector is axially symmetric.

In conclusion it is felt that the profusion of multiple scatterevs and the
widespread use of cerner reflectors warrants theoretical investigations, even though
the corner reflector may be a poorer standard thar the sphere since its esxact
golution is not known. It is shown here that when A {h the cross section of

these bocdies can be predicted within an order of magnitude.
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APPENDIX D
MONOSTATIC RADAR CROSS SECTION OF THE ELLIPTICAL
CORNER REFLECTOR*
1
INTRODUCTICON

As discussed ir Appendix C the monostatic radar cross section of a

corner reflector is given by

LTS (1.1)

in. which A is thc area of ‘he projection of an equivalent aperture on a plane
normal to the direction of incidence. A conven:ent aperture, as described in
Appendix C may be constructed by cutting out of each of the four guadrants
of each coordinate plane an aperture of the same shape as the leal of the
corner reflector associated with that plane. This A will be determined bere
for the elliptical corner reflector, a shape frequently employed in asymmetric
and limited volumes; &8 a special case, the area A will also be given for the

circular corner reflector. Onuly tripiy-reflected radiation will be considered.

*

Appendix D (Unclassified) of The University of Michigan Report "Studies in Radar
Cross Sections XVIII - Airborne Passive Measures and Countermeasures', by

K. M. Siegel, M. L. Barasch, J. W. Crispin, R. F. Goodrich, A. H. Halpin,

A. L. Maffett, W. C. Orthwein, C. E. Schensted, and C. J. Titus (2250-29-F,
Jeauary 1956). SECRET.
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2

PROJECTION OF THE FQUIVALENT APERTURE
The area A will be a function of Z/ 2, m/b, and n/c, where £, m,
and n are the direction cosines of the line-of-sight with the three coordinate
axes, and a, b, c the edge-lengths of the ellipses along these axes. Because
of the sym.netry of the optical model, it is necessary to consider only the
range of parameters
Z/a > m/b >r/e, (2.1)

where 154, m, n>0. (2.2)

The coordinate system may then be chosen in accordance with equation
(2.1). Because of the invariance of the optical model undzr reflections in the
coordinate planes, a righi-handed system may always be chosen.

Consider the cornsr reflector of Figure D-1.
z

e

X
FIG. D-1: ORIENTATION OF CORNER REFLECTOR

The equations of the three ellipses are
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b o ren e can

lelaz + y2/b2 =1
x2/ al + 22/02 =1 (2.3)

yz/b2 + 22/02 =1

Project these curves onto the X-Y plane along the line-of-sight, or

(Z, m, n) direction. These equations of these projected curves are

2
x2/a + y2/b? = 1

22 c? + nzaz)

x2 - -g-é- xy + y2 = a2 (2.4)
m m202
m202 + nzb2

chz xz*-zf-xy+y2=b2.
The area common to *the three curves ig to be determined, and then projected
onto the plare normal to the line-of-sight. A is therefore the common area in
the X-Y plane multiplied by n, the cosine uf the angle betwesn the normals to
the two planes.

The procedure is simplified by an additional projection which transiorms

the first eliipse into a circle. If b € a, the projection introduces the transformu-

{
tion
x' ="cos¢/=x§-, (2.5)
where ¢ is the projecting angle. If b » a, use
y‘=ycosx=y-§~. (2.6)

Either of these will lead 1o the same final result for A. The first is employed.

332

- B



I TR T

Equation (2.4) then becomes {(dropping the primes on x and y)

2 2 _,2

X"ty =b

N . £%2¢% + n2a2p2
2 . = b2 (2.7)
ma m2 a2c2 J

2.2.2 2.2+:2
m“a“c® + n“a“hb 0 Tma 9

2
- + = .
X 7 Xy +ty b

£2p2c2
The area common to these three curves must be found, and multiplied by na/b

to yield A.
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THE INTERSECTIONS, SEMI-AXES, AND ORIENTATIONS OF THE CURVES

Using the condensation symbols

L =l2 b2c2, M= mzazcz, N =n232b2, (3.1)
Equations (2.7) become
2
(a) x*+y%-b
2 L+N
b) x° -2 \/-I-*- xy + y2 <2 (3.2)
M M

M+N 2 M 2 2
(c) X —2'\/—-— Xy + = he,
L L y

The intersection points cf these three curves are displayed in Table D-2
the key to which is Table D-1. In each block, the upper intersection is en-

countered first in a counter-clockwise circuit.

TABLE D-1

NOMENCLATURE FOR INTERSECTION POINTS

1 2 3
. p E
B F
c I
2 | p J
. | G X
314 L
]
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TABLE D-2
LOCATICN OF INTERSECTION POINTS
6 =0 6 = L
2
0 =x g = %
2
p =b p —.b
2YLM
fltang = ———— tan § = YM/L
L -M+N
. M+ L
= b - D
P | N
tan 6 ‘—'ﬁ.E/L L-M-N
L-(M+N) d
tan @ = - —————— L-M+N
) 2 VLM 5 5 2. 9
¢ ! pz _b%  (L+M)(L-M)“+2N(L-M)"+N°(L+M)
' : N (L-MP+2N(L+M)+N2

It follows from the ineguality ['_equation (2.1)] which may be written

L>M>2N (3.3)

that the intersection points are ordered in the following fashion:

TABLE D-3

[y e
£ ey d

ORDERING OF INTERSECTION POINTS

Csase 1 LEM+N
Quadrant 1 2 3 )
Point: P G UVCJHE KIiB H J D}{F L
[ H b a>» bjlb¢hb jib b > bdb(b
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TABLE D-3 {Continued)

Case 2 L?7M+N
Quadrant 1 2 3 4
Point: ‘ P K I C I E G B L J D|IF H
p: ! b b Py b | b b b >b >pL bijl b b

The curves may, therefore, be drawn as shown in Figures D-2 and D-3.
Now the area of a sector of an ellipse of semi-major axis r and semi-minor

axis 8 between the angles @ and B is given by

B
Area = X8 [arctan (f ta.np):] {3.4)

2 a
The semi-axes and orientation of the semi-major axes in our coordinate system

must therefore be obtained. For the circle, of course,

r =8 =hb (3.5)
for ellipse (b} of equation (3.2)
rB 2 'D2 M
- = 13.6)
2 - 2
8 L+*N+M + \[(1.+N-M) + 41M
for ellipse (c) 5
2 2b L
_E... = — (3. 7)
2 )
8 L+N+M7¥ \QL-M-N) + 4ML

The angle between the semi-major axes of eilipse (b) and the x-axis is the

first quadrant root of

——, (3.8)
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SIX-SIDED AREA FOR L <M + N
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The similar quantity for ellipse (c¢) is given by the first quadrant root

of

(2.9)

The final expressions for A, the shaded areas in Figure D-3 may also be

given. They are, for L {Z M + N:

K-6
Pl 2 -\/MN tan 2
=nab (C-G) +nab\/ arctan i +
L+M+N -V (L-M+N)2 +4LM c-6,
- (3.10)
2 VIN t -
0 Y an 3
nab -N— arctan H
L+M+N -V (L-M-N)? + 4LM x—93
for L > M+N:
2 y/MN tan p
A =nab (C-P)+nab YM/N arctan
L+M+N -'\/(L-M+N)2 +4LM
(3.11)

When the values of P, B, C, G, H, and K from Tsbleg D-1 and D-2 and

th ~xpressions for 6, and 93 from eguations (3.8) and (3.9) are utilized in

2

equ omns (3.10) and (3.11), these expressions for the common area become:

I

A Vit (2 ) VRt (2 ViM

LS M+N, ——
abe L+M-N \ L+N-M

(3.12)
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2 42 2 2
L < M+N, -—%- = VL tan} (M+N)” - L + VM tan™} (L+N) "_i"[
axe 4 LN MN " 4 M \IN

(3.13)

2
- N2
+ Wi (AW N )

4N LM

We may simplify the form of these egi.ations by making use of the

eymmetric functions

(L+M+N)

m
(]

1
2
L

T=LMN.

Ther we have
\/ T 1 \/-T-
LA e M )+ VRt Yy .
+N, — = an (3. 14)
L>M abo M tan SN S-M »

LsM+N, A - YTt /—-————S(S'L)> + /M tan" (S(S M)>

\yLT

VN et <S(S-N)
VT

(3.15)

This form is the easiest for nume: ical computation.
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DISCUSSION OF RESULTS

it is to be noted that fur the transition point L=M +N, G =P =0
and F =B =K =7, so that ecuaticns (3.12) and (3.13) become identicai,
as they should.

Further, the transition peint correspords to that of £ 2. 1/2 for
a circular retlector. For a2 circular corner reflector of edge !ength R,

equatious (3.12) and (3.13) reduce to

Pyd, A cmtant 21';\/ +n tan” <12[m> (4.1)

~
1-2n2
4 £ mn?
2
The values of A/R for a circular corner reflector of unit radius have
been computed from equations (4.1) ond (4.2). A is plotted as 8 function of
w? (or n2) for fixed values of £ 2 from 0.0l to 0.99 in steps of 0.0l (Fig.D-4
2 2 2

to D-23). Ofcourse.l ,m , and nz =1 - 12 - m may be permuted in any
convenient way in using these graphs. ¢ i8 determined from the graphs as

2
47 A
g = hd . (40 3)

22
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APPENDIX E

BISTATIC RADARS AND FORWARD SCATTERING'

1

SUMMARY

The radar cross section results which are least understood by radar
experimenters are in the area of forward scattering. It is here that a scat-
tering maximum exists when the wavelength is small in respect to the dimen-
sions of the body, and the theorist who wants precise results is most apt to
question another's conclusions. Xt is here that the experimenter finds he
"observes" the incident beam in his results.

New theoretical results for forward scattering are presented, and it
is shown that physical optics results do predict this forward scattering maximum

correctly even for complex shapes.

*
A paper presented by K. M. Siegel at the IRE meeting in Dayton, Ohio, on
the 13th of May 1958,
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INTRODUCTION

During the early 1950's one of the authors (K. M. Siegel) commenced
an investigation of radars whose transmitters and receivers were separated
by large distances. Other theoretical analyses along these lines were made
by Professor R. V. Pound of Harvard and Professor G. E. Valley of M.LT.,
and excellent work was also performed at McGill University under the direc-
tion of Professor G. A. Woonton., In June 1952, R. E. Machol and the
above author coined the name "bistatic radars" to describe radars of this
type. The name came about because Sir Watson-Watt used the word '"mono-
static' to describe his recommendation to put transmitters and receivers in
one place. R was to emphasize the desirability (for certain applications) that
transmitters and receivers be spaced far apart that we decided on the word
"bistatic''. Intended applications primarily considered situations where the
target was blown or driven betvyeen the transmitter and the receiver. I
the physics of the problem allows it, the positions of the transmitter and
receiver should be chosen 8o tha? the target lies exactly on the line joining
them. Moreover, the method to be used should subtract off the incident field
vectorially. If this can be done then a bistatic radar operating at high micro-
wave frequencies is always better (in the following sense) than a monostatic

radar. It is better because when the wavelength is small in respect to the
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dimensions of a target, the forward scattering cross section increases in
direct proportion to increasing frequency while the backscattering cross sec-
tion of convex targets of major interest remains essentially constant with
increasing frequency. Thus for the spectrum of usual radar interest (that

is, for wavelengths small in respect to the dimensions of the scatterer) the

forward scattering return dominates the convex target's return at all other

1 aspects.
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FORWARD SCATTERING AND RADAR CROSS SECTIONS OF ARBITRARY
CONVEX SHAPES

For separation angles such that the receiver is not near to, or in,
the shadow region, the leading term of the asymptotic expansion of the exact
electromagnetic cross section for convex shapes is given by the geometric
optics. (For reference to asymptotic expansions pertaining to electromagnetics
one should refer to the many excellent New York University reports on the

subject. )

The radar cross section is defined za

2
E

E

c(6, ) =lim 4 0 (Ref. E-1) (3.1)

-+ 0O

where E® is the scattered field and E! is the in~ident field. For far fields

s ikr

E =E, 2 6, M),
r

i

E =E_ X%
[+
and
92

o (6, ) = 4x [fl". (3.2)

The total cross scction is given by two formulas

oy J|f|2 40 (Ref. E-2) (3.3)
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Im f{(x) (Ref. E-3) (3.4)

where In means "imaginary part", and the argument x refers to forward
scattering (in some references the angle 7 is used to denote backscattering).
The cross section given by geometric optics is wavelength independent.

in the form

%{ Let us therefore write the exact cross section G
b
:

O‘T =G+ 2P Q + higher powers of A

3e where G and Q are wavelength independent. If p > 0, then G is the leading term
of the asymptotic expansion at high frequencies. If p = 0, then G and Q can be

combined to form a new G. I p ¢ 0, the limit of oT as A - @ is infinite, in

violation of the conservation of energy. Thus the leading term of the asymptotic
expansion of the total cross section ch is wavelength independent. Hence from

equation (3.4)

Im f (1) o S8 - G
Ax 2

for small A, This means that the leading term in the expansion for the scatter-
ing function f must be either G/2X or M/A% where q3 1 and M is wavelength

independent. In either case the forward scattering cross section is such that

o ) >ar |-G|°
2

(for small wavelengths). But fur receivers not in or near the shadow region

the cross gections are wavelength ndependent as regards the leading term of
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the asymptotic expansion for small wavelengths and for convex bodies. Thus

for backscattering or for receivers not near or in the shadow region the cross
sections are of higher order (much smaller in magnitude) than the forward
scattering cross sections.

By straight applications of Kirchhoff theory (Ref. E-4) the forward

scattering cross section is 47 A2/ )\2 where A is the area under the curve

f separating the lit region and the shadow region on the body. The method

which is used is equivalent to applying a Maggi trarsformation to the integral
equation (R=f. E-2) and then evaluating both integrals. Since the Kirchhoff
answer for forward scattering is pure imaginary, we have (from equation

(3.4) )
fir) =1 A,
N

This actually turns out to be the correct leading term of the asymptotic
expansion and hence the leading term in the expansion for the total cross
section UT is 2A. An analysis proving this fact is presented in Reference
E-5,

The result of GT ~s 2A is well known from scaftering work in modern
pbysics. The interpretation of the factor 2 is as foilows: the emergy scat-
tered in the small angle forward direction is exactly equal to the scattered
through large angles all over. In t.he short wavelength limit the small angle
forward direction becomes the geometric shadow. The cross section for this

term i3 the geometrical cross section A. Hence the total cross section is
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2A in the short wavelength limit., Thus, physical reasoning alone would have
given us that Im f(x) = A/ and this term is the dominant term in the expres-
sion for f(r) for small A. This same reasoning forces f () to be pure im-
aginary to this order and enables us to recognize that the Kirchhoff forward
scattering answer is exact. Nevertheless, the result can be derived from
purely mathematical principles and this is done in Reference E-5.

We shall now attempt to push these results towards wavelengths which
are almost equal to the maximum size of the scattering object. Asymptotic
theory should not be used in general in such cases and each individual shape
of target has to be considered separately. Let us examine the results for a
sphere.

Hamren (Ref. E-6) has studied scattering by a conducting sphere both
theoretically and experimentally. He compares (Figure E-1) experimenial
values of the scattered field with theoretical points obtained by summing the
Mie series. This is done for a wavelength of 3.2 em for a sphere of 4.75 A
diameter (i.e., ke = 14.8, where a is the radius). The measurements and
computations were made at a distance R = 1.5 M from the center of the sphere,
and give the amplitude of the component of the scattered E-field parallel to the
incident field as a function of the angle off axis in the equatorial plane behind
the sphere. His measurcments of Eﬁ are such that the zero degree location
corresponds to true forward scattering. It is interesting to note that his
forward scattered field which he computed yields a cross section differing by

only sbout seven per cent from the value 4% (7 32;‘/ A2,
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The error one can tolerate in calculations determines the smallest
ka that can be used when applying 4 x A2/ )\2. In radar applications an
error of seven per ceni is of course negligible. Thus, for a sphere, one
could use much smaller values of ka than 15.

In order tc obtain a feeling for forward scattering and the region for

which this type of cross section applies, an example will be given showing
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how to compute the approximate small angle beam width for the sphere. The

total ecattering cross section is given by equation (3.3). If the half width of i
the small angle beam is denoted by £ /ka, where £ is a constant, then
o= 5 S ka X2 &in adedp
T 47
0 0
2 T
+ S —3— sin 6dedp,
A
£
T - =
0 ka

since, by geometric optics, o0 =« Rl Rz where R1 and R2 are principal

radii of curvature. For a sphere R, =Ry =3, giving o (6, p)=x aZ for

@ not within the forward scattering cone. Within this cone the formula

47 A2
o (") = -
A2
has been used. Hence
2 T - ._’£
O =~ 2r = cos 6 ka .
4z
0
for large angle scattering
T
(x a2 )2
nT- -2 -—2-— cos 6
A
-2
ka
for small angle (or forward) scattering giving
370




2 2)* .
o =X2 1-cos(1r--£-)l— 2rlra’) cosr—cos(t-‘g)
T 2 ka

ka J A2

By expanding cos 6 about 6 =¥ and noting that ka is large

2 2,2 2 2
o =I% 24 2'(';) £ =1a2+1a2 ‘£—.
T A 2 (ka)2 4
f
Hence, the assu'mption of the beam of half width i—‘; does not lead to a contra-
diction. For the sphere
ch =2 a2

8o that £ = 2, and the small angie beam width is then 4/ka. It should be

noted that this ia an apprxoimate answer, since it has been assumed that

L

the cross serition changes abruptly at the angle 6 =¥ - T
a

n
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ILLUSTRATION OF RESULTS FOR AN ARBITRARY SHAPE BY SCALAR THEORY

To illustrate the method used in Reference E-2, S. Stone of The
University of Michigan Radiation Laboratory has applied it to obtaining the
total cross section.

Using Green's Theorem together with the Neumeann boundary condition
for the problem, an integral expression for the scattered wave has been
derived in Reference E-2, in terms of the value of the incident wave on the
surface and the appropriate Green's function. In the following discussion ﬁ=
direction of the incident plane wave, 3 is the outward normal at the surface,
T is the spherical vector from the origin to the field point and T' is the
vector from the origin to the source point. If

k- .
Y=yt andy, =e with k = -k,

then according to Green's theorem

- _ 1 .-' _9 - .g’
Wa(r)-; S WB (r') ¥n Gk(l'.l‘)
S
4.1)

-y @D v, @) as,

Y

dn

Since = 0 at the surface of the scatterer,

3”2

S st o), ot e A ¢t . WU T A SN A HE i LI e

P N R L

ey e s <
y Mbl  ®0

i

T



s must equal - B there, giving
on 9n

%QHLS[%Qa g G 7
S

4r an
+%mm£—mw4m.

For very short waves we know that the part of the surface for which " ﬁ

is positive (if the surface is everywhere convex) as in the "shadow", whereas
those parts for which .8 s negative are "illuminated" by the incident
wave. What is meant by "shadow" is that Y3 almost completely cancels ¥, ,
in value as well as in normal derivative there. In the "illuminated" part, on
the other hand, while 3y ;/ 3n cancsls 3¢,/ 23n, ¢, is approximately
equal to vy at the surface. Therefore, the scattered wave can be represented
approximately by integrals of the product of the Green's function and the

incident wave, but with different combinaticns for the two portions of the surface;

-t __L .5' __a-* ... _.‘)

rg G L ¥ @] as
(4.2)
1 T, ™ 2 (6
>4' S"[gk 'i

ti



where the subscript §'indicates integration over the illuminated portion and
the subscript S'indicates integration over the shadow area.

These two integrands have very different behavior. The first represents
the "reflected wave", the second is the "shadow forming" wave, which is
needed to cancel the incident wave.

The second integral may be simplified by means of a Maggi transforma-

tion. The vector
R=@ V' v~ 4@ V g),

considered as a function of r', has zero divergence {(except when T is on the

surface also). Thus we write
div' A = 2 2
5V YWV g
ol & »
=4zy, () 8 (x-r),
and A can be considered to be a curl of a vector B . Using Stokes' theorem,
. -l by 1 s —r
— xB +d8§ = — Be.ds
[ v L

where the line integral of Bis along the line which separates the shadow from
the {lluminated part of the surface, I follows that the integral does not depeud

on the shape of the shadow surface (only on the shape of the shadow line). To
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the degree of approximation represented by equation (4.1), the shadow forming
wave {8 the same for all surfaces having the same shadow line.

The first integral in equation (4.1) cannot be calculated so easily and
for short wavelengths it is usually evaluated by the method of steepest descent.

I will now be shown that this approach predicts the same total cross section

as the Kirchhoff method.

f The Green's function

where the approximation is to take R o~ r-(%- T') in the phase factor and
R« r in the amplitude. This is true for large r. The incident wave is
ik, . T
i
wi e and for incidence along the z axis, ii = -fzk. On the surface

- -ikr'(’i\z - 1)
wi (r') = e
For forward scattering £ = "?z so the Green's functicn becomes

A
ikr ikr'(i, - ?')
e L ]

- &
gk r

Equation (4.1) may now be written

w.G)-v-i_— 5 I;

[ TR e——

-ikr' cosf’ ( ikr ikr' cosf'
] e e )
v r

sl
: ikr ikr' cosé' -iky' cosf" -
! + '9';— e V' (e ) - ds
) S euu- ikr' cos’ ~-ikr' cosé'
™ | T- ° v' ° )
~ikr' cosd'

aly
ds .

o,
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This can be found from (4.2) by replacing 8/ 3n with i+ ¥V and
(Z.%) by cos 6'.
If the indicated operations are performed, the integrand of the first
is found to be zero, while the second integrand is
ikr

e
r

A=

2ik [-cose' £'+ gind' 5']

This is the vector obtained by the Maggi transformation. If v' +Als
computed, it is seen to vanish everywhere except when T is on the surface.

The scattered wave is then

Y (r) = ~— 2ik £— - c086' T'sing’ §° . as
8 4x '
r s
or
ikr A A
-l = Ao e - .
tﬂs(r) 2ik - S i+ 0 ds l

This may be rewritten as

1
v @) --1o 2k & j dA
8 " r
A

where A is the projected area, giving

k
b
|

- ik
.‘/ (r) =z — A - .
- r

Examining this expression it is seen that

f{w) = A
2y
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and

which is the total cross section predicted by the Kirchhoff method. As
previously stated, this is the result "well known" to theoretical physicists

fworking on scattering problems.
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CONCLUSIONS

If the wavelength is small compared with the dimensions of the target
and the physical situation is such that one can measure forward scattering
returns, then these bistatic cross sectious are always greater than the mono-~

§  static ones for targets of convex shape. Of course, forward scattering applies
only to positions of the receiver within the forward scattering cone. For flat
shapes (neither concave nor convex) there is one aspect of the body for which
the monostatic cross section equals the forward scattering cross section; at 1
all other aspects the forward scattering result dominates. But for all convex
shapes the particular bistatic cross sections corresponding to the forward

scattering direction dominate the scattering pattern.
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APPENDIX F

POWER SPECTRA FOR EXPERIMENTAL DATA

1
INTRODUCTION

We Lave observed from the text and the other appendices that the
radar cross section of a given aircraft or missile is a function of aspect
and wavelength., In practice, however, the observed variation in the cross
section will be a variation with time. This time dependence will be due
naturally to chauges in aspect with time, changes in frequency with time, and
changes in the relative positions of the scattering surfaces (due to vibration,
etc.) with time.

It is thus apparent that in the study of the radar reflection
characteristics of a given target one's interest could be directed toward tke

time distribution of the amplitudes. In the belief that one may be able to find

something characteristic of the target in this "fine structure' of the return the
method of study becomes a statistical one. A common approach involves the
study of the autocorrelation function and the power spectrum associated with
the time varying quantities. In this appendix and in the following appendix
(Appendix G) we shall illustrate this approach; that ia, we illustrate the ap-
proach to follow in performing this statistical study of the function #(t), the
crose section at time t. In this appendix we shall turn our attention to an
approatch used for experimental dats and in Appendix G we shall consider a

purely theoretical problem.
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The experimental study invqlved the determination of the power
spectra and the autocorrelation functions from dynamic data; the results of
this study have been reported in References F-1 and F-2. A study such as
this one deals with finite samples while the classical theory is based upon a
sample of infinite size. A certain amount of arbitrariness is thus involved

when the theory is modified for application to a finite sample. Alternative

f
definitions of the power spectrum and autocorrelation function have been given

in the literature (Refs, F-3 and F-4)

Even though the main contribution to the radar cross section of V-2
type missiles usually comes from the fins, the variation in the shapes of the
curves found for missiles with swept-back fins appeared to be as great a3 the
variation between these and the curves for missiles with rectangular shaped
fins. In fact, there appeared to be little difference between the spectra found

for missiles and those obtained for a B~57 aircraft (Ref. F-5).
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3

THE DEFINITIONS OF THE AUTOCORRELATION FUNCTION, R(T),
AND THE POWER SPECTRUM, S(w), USED IN THE COMPUTATIONS

In this section a brief summary of pertinent facts concerning the

usual R(T) and S(w), the definitions of R(T") and ${w) used in the computations,

the relationship between R(T) and S(w), and one aspect of the significance of

the definitions are presented.

When a real random function y(t) is known for all times t from 0 to

o0, the autocorrelation function Rw(‘r) and power spectrum, §_ (w), are defined

as

R_(T) =

end

where

Note that

and

T
im L f ¥O) Yt +7) at ,

S, = lm 2laeml?

Ty o T

. T -t
Aw,T) = f v e dt .
0

Ver

B we 0 , 'n,ml < RO,

=

g (W = —:— j' R_(T) cos(w?)dT,
0 ,

The last equatiop 18 known &8 the Wiener-Khinchine Theorem.

e e S =

*
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For a random function y(nTo). n=0,1,...,N (that is, for a finite

set of data), the autocorrelation function, R(7,T), and the power spectrum,

S(w), will be defined here by

N-s
I |
R(‘r:s ,T) = N 2;;: y(nTo) y(nT°+'rs), where Og’rs.é NT0
and
fR(‘I' ) =0 if <0 or T >NT (2.6)
8’ ’ 8 8 o ! ¥
where
2 2
T = 8T _ , s =0,1,...,N, and S() == |FW,T)| ,
8 0 T
2.7
where
T, N -iwn'l‘o
F, T} = ——= 2 y(nT ) e . (2.8)
’ V-Z_'- n: o

Note that the summation in R('rs, T) is divided by N, the total number of values
for y(nTo). rather than by N-s, the number of values of y(nTo) X y(aTy+ T )

in the summation. The reason for this is to preserve the relation

S(w) = -5-29— 2 R(sT,, T) cos(usTo)-—;— RO, T)) , (2.9)

s=0

which is the analogue of the Wiener-Khinchine relation. A procf of
equation (2.9) is the following:

Using the definition of F{w, T) given in equation (2.8),
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n=0

h.)(n-m)To

y(nTo) y(mT 0) e

8=n

m 2 iwsT
T r
” Z Z yinTy) YL(“‘“)TJ e

N N
Toz )"—7 T iwsTo
= —2-;-_ . R y(nTo) y[(n-s)To} e

s8=0 n=s

= N8 iwsT
. 2 E yuT,) y[(n-S)T] e °
==-N n °
D e 25
o 2
= e y(nT) +2 y(nT ) y[(n-s)'r] cos(wsT, )>,
2r n=0 ° 8= ns=s o o °

From the definition of R('Ts, T

T
R(sT,T) = (—T&) 2:_: y(nT,) y[(n—s)'ro] .

where
T = NT, .
Thus
N
2 2 T
8) w = [F,T)| = 3" | Rlo,T)+2 R(sT,, T) cos(wsT,)
1

from which equation {2.9) immediately follows.
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One aspect of the significance of the definition of F(w, T) may be
seen from the following considerations. R( 'rs, T) and S(w) were computed
(in the missile calculation) according to the above equations, using for y(nTo)
an averaged value of cross section;
Set of Discrete Data M =5

that is, each & is the average over

six sur2essive values of ¢ with no

f(t) ," —
x X overlap in neighboring 7's. Con-

sider the Fourier analysis of an
arbitrary function f(t) which passes

through a given set of points fn mde-

. e Ao s Sagmrs. 3
”_—_—_-'

fined at the times t ,m=0,1,..., M,
n,m

-
H ot

t =t
to,0 to,1 0,6 1,0 n=0,1,...,N, and (t) = 0 for t <t ,

|
and t > tN, M+l (The fn, mcorrespond
to the o values, M+l of these being used to obtain a value of 7.) The Fourier

transform of f(t) is given by

1 tN, M+l it 1 N 5"—. th,m#l -t
Flo) = —— f(t) dt = o= E £(t) dt,
() s e = L g e

too n=0

t lid ided t =t this insures that
the latter expression peing valid provice ML L0 ( u
the whole integration range be covered).

i

thmH “tom =D wd t, =0,

385



T

64k Ly

il i

then

tn.m= nM+1DA +mA ,
and
tomel = M+ DA +m+DA ,
-tn,m+1 . A .
~jwt -n.)tn m -iwt'
f(t) e dt = e ' J' f(t' +tn.m)e dt',
f tn.m\ 0
fwA1,
K, -w [n(M+1) A+ma4] _
F = (O 2 i e f .
Var /5 m= n,m
where
tn,m+~1
7T = (L1
T (A) j K dt .
t
n,m
If further wMA << 1,
T 'imTo »
Flw) = 2 E f e
Varx n n
where
To = (M+1) A
and
n M+! m= s
386
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The formal similarity between this expression for F(w) and F(w, T) as defined
in equation (2. 8) is apparent. If now f(t) is slowly varying over time intervals

of length A (i.e., £t) is band limited with w
AY

maximum<< 1/A),then fn,m5

~ . ~ N . : T
tn,m= fn, ml? that is, fn.mmay bg replaced by f n,m iB which case fn is
A

merely the average of the M+1 values: ‘fn, O’fn, P f oM’ Thus, the defini-

4
tion of F(w, T) given above and used in the computations gives the power spec~

trum, for v <<1/ T, (T, is the interval over which the data are averaged), of
a function which is zero outside the observziion interval and which passes
through all the points of the data before averaging. It is assumed that the
function is band limited with maximum frequency << I/A (A is the pulse
repetition period of the radar used in obtaining the original data). In this
nase, A =1/409.75 sec and T, = 6 (M = 5).

In actual practice, the following procedure was used: .

R(7) = R(sTy) = ( %) i: o (nTo) 3 ((n+s) To) .
n=

wlere values of s used were
8 = 0(5)150(25)1250 for S-band ,
8 = 0(5)20C(25)1250 for X-band .
These are the values shown on the accompanying list.

Then S(w) for w & 2x was approximated as

2T,
S(w) = '—-;—9— N aa R(BTO) COS(WTO) »
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where

5«& s € 145 for S-band
for

)
I
3

5 ] 195 for X-band
{

s = 150 for S-band
ag = 15 for »
s = 200 for X-band
25 ¢ 175< 8 € 1250 for S-band
3 = °T 1 225 s € 1250 for X-band

This procedure was used to obtain S{w) for w/2rx = 0{(.1)1.0 cycles
per second, for larger values of w, the method must be altered, inasmuch as
taking s at intervals of 25 does not yield sufficient accuracy. In the interest
of economy of time and money, it was decided to return to the basic definition

of the power spectrum, namely
2 2
Sw) = -; IF(w. T)I .

Numerically, this means

A

5 2 ] 2
25T, - _ e
e { o (SnTo) coa(5wT0) + [ (SnTO)Sm(amTo)

S{w) =

4
.

L )
This is the formula used to obtain S(w) for w/2r =1.1, 1.2, 1.5, 2.0, 3.0, 4.0,

5.5,6.0,6.5, 7.5 cycles per second. To get S{w} for higher values of w would
require taking more than every fifth value of ¢ which was not considered

warranted,
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APPENDKX G

DETERMINATION OF POWER SPECTRA FROM THEORETICAL
ESTIMATES OF T+E RAPAR CROSS SECTION

1

INTRODUCTION

f In Appendix F we have considered a procedure for determining power
spectra from experimental data; here we shall coneider the approach one can
use in determining the power spectra from theoretically determined values of
the radar cross section. Here we shall consider the case in which the aspect
remains fixed and the frequency changes. As an illustr:tion we shall assume
that the nominal frequency is 425 Mc, the pulse repetition frequency is 300
cycles per second, the pulse length is 6 microseconds, and the frequency scan
rate i8 5 cycles per second. We shall agsume that the frequency scar waveform
is sawtooth and we shall restrict our attention to two modes of frequency:
+1% amd 2.5 9 .

In fact we shall consider two different approaches: one is the spectrum

cof the cross sections and the other is the spectrum of the square root of the

cross sections. Section 2 is devoted to the consideration of the first case

and Section 3 is devotad to the congideration of the second.
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2

SPECTRUM OF THE CROSS SECTION

i ¢ s e ———— 3 :
,

v b

The problem here is to determine the power spectrum of the radar

return from a given aircraft for a specified aspect when the transmitting

radar is both pulsed and frequency-modulated. Since the frequency modulation
sweeps at a rate of 5 cycles per second, harmonics of this frequency are
expected in the return. The importance of these harmonics may be assessed
through the determination of the power spectrum.

The radar cross section, ¢, has a period of 5 cycles per second by
virtue of its frequency dependence. Since there exists no time axig, in

general, about which o (t) is either even or odd, o (t) should be expanded in

a general Fourier series. Specifically, using the series in complex exponentials,

o (t) i8 written

[0 ¢}
o) = Z C, expli 10n 7 t) (2.1)

-0

where i = V -1 and t ia measured in seconds.

Determination of the power sepctrum from the constant term through

the first thirty harmonics consists in obtaining %Cnl for £n - 0,1,2, ....., 30.

¢

However, since o (t) is real, it follows that
cC = C* d =
=C, an |c_n| = |cn! .
It is therefore sufficient to coneider only those cases for which 0 <n.
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For n > 0, the contribution to o (which measures the power return)

at the nth harmonic frequency is given by the series (2.1) as

_ iw ¢ -wt
o(wn)—Cne n +C_ne n,

*
But since C-n = Cn’ this may be written as

¥
o (wn) = 2(Re Cn coswnt - Im Cn sinwnt).

It follows from this that the RMS value of ¢ (wn) is expressible as

5 1/2 2 ' 2 12
o) . ReC; cosupt] +{1,Cy sinupt] - 2[ReCpcosuyt] [1,C, sinwnt

4
1/2
o2 2 i
[...(Re C, + Im cn)] Jz lcn! .

Here the symbol <F(t>t denotes the time average of F{t) over the period
27

W
n

Forn=0, 0 = Co = ‘Co\ . The ratio of the RMS power in the

D‘ c.
nth harmonic to the D.C. power level, a useful measure of the effect of

frequency variation on g, may therefore be written

RMSo (w_)

—= -7 S
o C
D.C. [\

This set of quantities is referred to as the relative power spectrum.
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The Cn are given by

T

S o(t) exp(-i 10n 7 t) & (2.2)
0

- v o o
e A GANRE W I vl . ool )
v .
3

Cn=

=i~

where T = 0.2 sec. In order to evaiuate this integral several approximations

are introduced. It is assumed that the echo pulse is of the same form and

duration as the transmitted one and that the range v. riation is not sufficient
1

to effect a vaiiation in time delay. The return may then be taken as consist-

ing of 6K sec. pulses at 300 pulses/sec., and subject to the 5 cycle fre-

quency sweep. Furtber, it is assumed that this 64 sec. pulse width is small

enough so that both the operating frequency and the expcnential appearing in

the integral for C, are essentially constant over a single pulsa. (See App. C).
Th;e integral over t for Cn may now be replaced by a sum »>f the contri-

butions from the 60 pulses which occur during the 0.2 sec. frequency sweep. The

continuous variable t is replaced by t_ = (r/300) sec., r = 0,1,...,59. Each

contribution endures for A t. = 64 sec. rather than the infinitesimal dt. Also,

o(t) is replaced by ¢ (Ar) where X  is given as a function of t by the saw-

tooth waveform of the frequency modulation. Two modes of operation are

specified, corresponding to frequency excursions of £ 1 9, and t21/2 °/° t

respectively about the 425 Mc nominal operating frequency. Assuming the

sawtooth to siart at the low end of the frequency range, the relations between

Ap and t r are given approximately as follows" (with A given in cm):

t’l‘he smallness of the frequency sweep permits conversion of frequency linear in
time to wavelength linear in time.
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Ay = ~7.21tpem+71.3cm = - 7.21 rem + 71.3cm (Mode 1) (2.3)
300

Ap = -17.8trem+72.4cm = - 128 rom +72.40m  (Mode 2) .

Thus for a given aspect th_e dependence of 0 on A, determined
theoretically, is converted into the form o (r) through the application of the

relations of equation (1.3). From this expression for o (r) we obtain

59

1 T
Cc. == At o(r) exp(-i 10n —)
n T Bt § » 300
r=0

where T = 0.2 sec. and Atp= 64 seconds. Upon the substitution of the numerical

values of T and A ty, this equation reduces to

59
C, - (3x10_5) Z o (r) exp(-in » r/30). (2.4)
r=0

The theoretical cross sections of an aircraft or a missile can usually

be expressed in the form

Equation (2.3) indicates that the wavelength can be expressed in the form

A=Y -xt--Y(l-l;-t)

and that Xt <€ Y. Thus we may write

|r'I“hil; is, of course, the "average" or "random phase" result. The "relative
phase" result for the theoretical calculation of cross section, which will usually
prove to be of more value in & power spectrum study, is used in Section 3.
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A

lz‘a“—Yz - 2XY t.

From the above we obtain

A X

-1
5 Alx - 2A2 XY) t,

Ay 2
+A +A Y+ A, YO)(
Y 0 1 2 Y

o (

which we shall write in the abbreviated form ¢ =S + Rt, In this analysis

t =x/300(r =0, 1, ..., 59) and thus upon substitution into equation (2.4)

we obtain
: 50 59
C, ={3x107°){8 Z exp(-inxr/ 30) + 3—0% Z r exp{-inxr/ 30) ).
r=0 r=9

(2.5)

For n =0, it 8 readily seen thet

c =(3x 10™°X5.9R + 608).
From page 82 of the "Smithsonian Mathematicel Formulae and Tables of Elliptic
Functions' (1947) we have

3-1 Nsin(N-1/2)x 1-cos(Nx)

r cos (rx) = - (2.6a)
28im(1/2x  4si®1/2)x

g ]
u
ot

and
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N-1 gin (Nx) N cos (N ~1/2)x
E r sin(rx) = - . (2. 6b)
T =1 45in?(1/ 2)x 2 8in (1/2)x

The application of these relations together with the relation

59
exp (-in7 2/30; =60 § , n <60

A n,o
r=0

’to equation 2.5 yields

R 6Cs:n(119n 7/ 60) 60cos(119nx/ 60)

C, =(3x1079) + 1 , n#605; j =0,1,...

300 2sin{nx/60) 2sin(nx/60)

(2.7)

Combining equation 2.7 with the above expression for Co we finally have

C, _ |R|csclax/60)
Co |s9R+6008]
where
s—A'1 A FAYHAY
- 0" ™ 2
and
A_X
R=—— -AX - SXYA_.
2 X - 2KYA,

The applicability of this analysis to the higher harmonics is limited by
the approximation of the integral for C, by the summation. However, for n4£ 30,

the range treated here, the effect is not significant.
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It is of interest to note that the relative power spectra can be

r 7 bounded and that the bound ig quite small. To obtain this bound we note ,
{ that
f
f A-1 2 A-1
! 1s| > < +AY +A2Y > Y(-——;E + A X+ 2XA,¥)=Yf

since 0 < X <0,5m. Also,we observe that

; $ !
X i A
! [R| §—=L +A X +2aXY =1,
2 1 2
Y
E. l from which we obtain

|

! [59R + 600s| = {600|s| -59 iRi! > |600Y -59, f,
i
!

and !

J2 Icni JZ 1 csc (nx/60) V2 csc (n1/60)
IC_ *x <
ICo| ~ [600 ¥ - 59t 366
since Y 3, 0.71 m.

Thus since csc(nr/60) decreases monotonically as n goes from 1 to 30,

we obtain

vVZic f
Ilc"{ =<, 00387 csc (nx/ 60) '
(o]

§ < . 00387csc(3%) =.074.
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SPECTRUM OF THE SQUARE ROOT OF THE CROSS SECTION

If one is interested in determining the spectrum »f the square root of
the cross section, then the values of V2 ’Cn‘ / ‘Col given in the preceding

section should be determined using the expressions

T
T Cn = S Vo exp(-10inwt) &t , T =0.2 sec.
0

or, equivalently

1
Cn = S Jo(s) exp(-2in7s) ds. (3.1)
0

In this case, since it will often prove to be more informative, we shall employ
the "relative phase" cross section values of cross section. That is, the cross

gsection will be written in the form

N o |2
lp'e
@ e (3.2)

where
o = the cross section of the ./ th scatterer,

f; = the relative phase angle for the L th scatterer, and
N = the number of scattering surfaces considered in the

calculation

3.1 Maximum Value of V2 |Cp| /[Co|2s & Function of the Maximum Change in o

The cross section is always such that yG can be expressed in the form

Yo = A (1 + f(s)), where|f{s)] < K<I. (3.1.1)
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This would m>an that

Al1-K) <o <€ A(+K)

and that

—— ——

2
ag 14+K .
X« (5.1.2)
% min Sli-x !
‘ i
In determining the power spectra we have
f 1
Cn—‘—g Vo exp(-i 2n7 s) ds. (3.1.3)
!
0 |
For n = 0 we thus have
1
c, - S AL +(s)ds > AL - K), (3.1.4)
&
and for n 1 1
-i2nws
|cnl = S A f(s) e ds | €AK (3.1.5)
0
Equations (3.1.4) and (3.1.5) thus lead to an upper bound
V2 |c,| /ico‘ L VTK[(-L) (3.1.6)
Using equations (3,1.2) and (3.1.6) it is possible to determine the

magnitude of this bound as a function of (¢ max)/ (6 % this relation is

]
displayed graphically in Figure G-1. I can readily be noted from Figure G-1 i
!2 that if (o max)/ (o min) is less than 1.30 , then y2 \Cnl / ‘Col will be less }
T&
i than 0.1. g
g
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[ﬁ =C“l/icoﬂl max

FIG. G-1: o /0 in VS {__ﬁ ’Cnl/lcof]
/

3.2 Maximum Value of V2 i_C_d / FoL As a Function of the Change in Phase Angle

Let f(s) in equation (3.1.1) have the form Kcos(a + Bxs). That is
Vo =A{1 + Kcos(a + Bts)} » K1 and 30, (3.2.1)

Thus, (o max)/ (o min) £(1+ K)2 /{1 -K)2. This form for Jo is chdéen since
it approximates the type of variation expected in the aircraft cross sections.

In addition, due to the fact that in most cases in the consideration of aircrait
cross sections the phase angle will change by less than 27 for a § °/° change

Ll

in the frequency (about 425 Mc), we shall restrict our attention to the case of

B& 2,
400
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' Direct substitution of this expression into equation (3.1.3) yields
L‘ : upon integration
1 B
C, - A{l + K sin (Bw/ 2)cos(a + ____1_r_)} . (3.2.2)
Brn 2
‘; i *
i Cl = AKe /2, for B =2 (3.2.3)
and
! ior i(Br - 2n7) ~io| -i(Bx+2na)
c -] e = B P !
oo Br - 2n1 j Br + 2nx
(3.2.4)
for B £ 2.
|
*

3 C =0forn)y2andB =2
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APPENDIX H

RADIATION LABORATORY REPORTS

1

STUDIES IN RADAR CROSS SECTIONS

""Scattering by a Prolate Spheroid', F.V. Schultz (UIMM—-42, March
1950), W-33(038)-ac~14222. UNCLASSIFIED. 65 pgs.

m
""The Zeros of the Associated Legendre Functions Pn (") of Non-Integral
Degree'', K.M. Siegel, D.M. Brown, H.E. Hunter, H.A. Alperin and
C.W. Quillen {(UMM-82, April 1951), W-33(038)-ac-14222. UNCLASSIFIED.
20 pgs.

""Scattering by a Cone'', K. M. Siegel and H.A. Alperin (UMM-87,
January 1952), AF-30(602)-9. UNCLASSIFIED. 56 pgs.

""Comparisor between Theory and Experiment of the Cross Section of a
Cone", K. M. Siegel, H.A. Alperin, J. W, Crispin, Jr., H.E. Hunter,
R.E. Kleinman, W.C. Orthwein and C.E. Schensted (UMM-92,
February 1953), AF-30(602)-9, UNCLASSIFIED. 70 pgs.

""An Examination of Bistatic Early Warning Radars', K. M. Siegel
(UMM-98, August 1952), W-33(038)-ac-1422?. SECRET. 25 pgs.

""Cross Sections of Corner Reflectors and Other Multiple Scatterers at
Microwave Frequencies'', R.R. Bonkowski, C.R. Lubitz and C.E.
Schensted (UMM-108, October 1953), AF-30(602)-9. SECRET -~
Unclassified when appendix is removed. 63 pgs.

""Summary of Radar Cross Section Studies under Project Wizard",
K.M. Siegel, J. W, Crispin,Jr. and R,E. Kleinman (UMM-i08,
November 1952), W-33(038)-ac-14222. SECRET. 75 pgs.
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